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Abstract

Background: Docking large ligands, and especially peptides, to protein receptors is still considered a challenge
in computational structural biology. Besides the issue of accurately scoring the binding modes of a
protein-ligand complex produced by a molecular docking tool, the conformational sampling of a large ligand is
also often considered a challenge because of its underlying combinatorial complexity. In this study, we evaluate
the impact of using parallelized and incremental paradigms on the accuracy and performance of conformational
sampling when docking large ligands. We use five datasets of protein-ligand complexes involving ligands that
could not be accurately docked by classical protein-ligand docking tools in previous similar studies.

Results: Our computational evaluation shows that simply increasing the amount of conformational sampling

complexes we considered.

docking.

scoring; parallelism; incremental protocol

performed by a protein-ligand docking tool, such as Vina, by running it for longer is rarely beneficial. Instead, it
is more efficient and advantageous to run several short instances of this docking tool in parallel and group their
results together, in a straightforward parallelized docking protocol. Even greater accuracy and efficiency are
achieved by our parallelized incremental meta-docking tool, DINC, showing the additional benefits of its
incremental paradigm. Using DINC, we could accurately reproduce the vast majority of the protein-ligand

Conclusions: Our study suggests that, even when trying to dock large ligands to proteins, the conformational
sampling of the ligand should no longer be considered an issue, as simple docking protocols using existing tools
can solve it. Therefore, scoring should currently be regarded as the biggest unmet challenge in molecular
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Background

One of the most important biomedical applications
of structural biology is drug discovery [1-5]. Proteins
are essential components of living cells, performing
structural functions, chemical reactions, transporta-
tion, signaling, and so on. Most of these functions in-
volve molecular interactions with other proteins, nu-
cleic acids or small molecules (i.e., ligands or pep-
tides). The study of protein-ligand interactions is key
to understanding molecular pathways, which in turn
can provide opportunities for diagnosis and treatment
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of pathological conditions (e.g., using a drug to in-
hibit a key enzyme). Computational tools play a cen-
tral role in this field [2]. In particular, molecular dock-
ing tools are routinely used to predict the most likely
binding mode between a ligand and a protein receptor
(which is often referred to as geometry optimization),
or to screen thousands of ligands in search of poten-
tial binders to a target protein (which is referred to as
virtual screening) [6, 7).

At the core of every molecular docking method lie
sampling and scoring [8-10]. The first component, con-
formational sampling, relates to the challenge of ex-
ploring ligand flexibility. Most molecules involve rotat-
able bonds allowing them to adopt alternative confor-
mations in solution. Furthermore, the number of pos-
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sible conformations increases exponentially with the
number of rotatable bonds. This underpins the com-
putational challenge of exploring all these conforma-
tions and predicting the best fit between a ligand and
a protein’s binding site [11]. With the exception of very
small ligands, exhaustively exploring all the rotatable
bonds—or degrees of freedom (DoFs)—of a ligand is
infeasible, and several strategies have been proposed
to achieve efficient sampling [8, 12, 13].

Other considerations that we do not address in this
paper can render conformational sampling even more
computationally challenging. This is the case when
considering the flexibility of the protein receptor in
addition to that of the ligand. As there might ex-
ist structural differences between a protein’s bound
and unbound conformations, ideally, protein flexibil-
ity should be taken into account in molecular dock-
ing studies. However, due to the tremendous compu-
tational cost of doing so, various methods have been
proposed that consider only limited levels of flexibil-
ity [6]. Another important issue is the inclusion of “ex-
plicit” water molecules in molecular docking because
they sometimes mediate interactions between ligands
and receptors. Unfortunately, there is currently no con-
sensus on the way this should be done to improve the
results of docking tools [9, 10, 12].

The second important component of molecular dock-
ing is scoring [9, 14]. The goal of a scoring function is to
assess the “quality” of the conformations produced by
the sampling algorithm in order to guide the search to-
wards better binding modes and to rank conformations
of different ligands (as in virtual screening). Since nu-
merous conformations are evaluated during sampling,
scoring functions have to be computationally efficient.
This requirement imposes a major trade-off between
efficiency and accuracy when designing a useful scor-
ing function [12, 13, 15].

A variety of docking tools is now available, relying
on various strategies for sampling and scoring, which
both affect docking performance and involve different
challenges [10, 16]. Our work has been focused on ad-
dressing the challenges associated with sampling when
docking large ligands and even peptides. Our first step
was to develop a parallelized incremental meta-docking
approach to dock large ligands, called DINC [11, 17].
Showing promising capabilities, DINC was applied in
studies on STAT3 and STAT6 inhibition [18, 19]. After
significant software improvements, we demonstrated
its ability to dock large peptides binding MHC re-
ceptors [20]. However, these improvements were not
sufficient to ensure that DINC could accurately dock
any large ligand. To address this issue, we have re-
cently released a new version of DINC. One of the
most significant changes is that DINC now mostly re-
lies on the popular docking tool Vina [21], instead of
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AutoDock4 [22], as in its past versions [11, 20]. This
latest upgrade has been made available through the
DINC 2.0 web server [23, 24].

The rationale behind the switch from AutoDock4 to
Vina is that several benchmark studies have reported
that Vina performs generally better than AutoDock4.
For example, in [25], it is shown that Vina outperforms
AutoDock4 both in terms of sampling power and scor-
ing power. This is especially true for the Lamarckian
genetic algorithm method in AutoDock4, which is the
one that was used in DINC [11, 20]. Similar differences
in docking performance are reported in [26], which also
illustrates the computational efficiency of Vina over
AutoDock4. This confirms what was initially stated
by Vina’s authors, i.e., improved scoring accuracy and
sampling efficiency (through multi-threading and op-
timization) [21].

In this paper, we report the results of our evalu-
ation of the sampling power of several docking pro-
tocols, including DINC. We focus on the problem of
docking large ligands (including peptides) to protein
receptors. For our evaluation, we use five datasets of
protein-ligand complexes reported in related work and
involving large ligands that could not be accurately
docked using Vina or other docking tools [11, 25—
28]. Although it is impossible to fully dissociate the
effects of sampling and scoring on the output of a
docking approach, there are approaches for assessing
sampling power somewhat independently of scoring
power [14, 25-28]. To do so, we check whether a given
docking approach is able to produce binding modes
that are similar to the crystal structure of a given
complex, whether or not these binding modes receive
high scores. The docking approaches we evaluate all
involve Vina and are based on (i) varying Vina’s ex-
haustiveness (i.e., the parameter defining the amount
of sampling performed by Vina), (ii) running several
instances of Vina in parallel and grouping their results
together, in a protocol we call Multi-Vina, and (iii) us-
ing our parallelized incremental meta-docking method,
DINC.

Our results clearly show the benefits of using par-
allelized approaches over simply increasing Vina’s ex-
haustiveness. Furthermore, the good performance of
DINC indicates that the incremental paradigm it re-
lies on provides additional benefits over only using par-
allelism. Overall, our study suggests that, even when
docking large ligands (i.e., ligands with more than a
dozen DoFs), conformational sampling is rarely crit-
ical if enough computing resources are available. Al-
though this might not be satisfactory in the context
of virtual screening applications, where computational
efficiency is paramount, this is evidence that the con-
formational sampling challenge can essentially be con-
sidered solved in the context of geometry optimization.
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This also highlights the fact that scoring remains the
biggest unmet challenge of molecular docking.

Results

In this section we present the results of our evalua-
tion of several docking methodologies that involve the
classical molecular docking tool Vina, including our
parallelized incremental meta-docking tool, DINC. We
perform redocking experiments, which consist of try-
ing to reproduce the crystal structures of challenging
protein-ligand complexes from five different datasets
(see Methods section). The most extensive part of
our benchmarking involves only the first four datasets
(Dhanik, Renard, LEADS and Hou) as the fifth one
(PPDbench) was published after we had performed
our study. The PPDbench dataset is involved only in
a smaller experiment reported at the end of this sec-
tion. Note that, in our redocking tasks, we only explore
the flexibility of ligands, and keep proteins rigid at all
times.

To assess the quality of the results produced by a
docking protocol for a specific complex, we evaluate
the Root Mean Square Deviation (RMSD) between the
predicted binding modes and the initial crystal struc-
ture of the complex, considering all the heavy atoms
of the ligand, i.e., the so-called all-atom RMSD. The
results we report for each complex correspond to the
RMSD between its crystal structure and the so-called
top-RMSD conformation, i.e., the conformation pro-
duced by the docking tool which is the closest to the
crystal structure (see Methods section). This allows
assessing the sampling power of a docking tool irre-
spective of its scoring power. Note that we consider a
crystal structure to be successfully reproduced if this
all-atom RMSD is less than 2 A, which is a common
threshold in the docking community.

Vina

As explained in the Methods section, the protein-
ligand complexes we selected for this study involve
large ligands and cannot be reproduced using Vina
with its default parameters. The main parameter we
will refer to in this section is Vina’s exhaustiveness,
which defines the amount of sampling that is per-
formed by Vina before it returns its results, and whose
default value is 8. Note that it is a unitless parame-
ter whose value should be a positive integer, and it
has no maximum value. The results we have obtained
when using Vina to try and reproduce the complexes
from our first four datasets are listed in Tables 1-4,
under the column titled “Vina”. These results are av-
erages (and standard deviations) calculated from five
runs. For all complexes, the all-atom RMSD between
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the initial crystal structure and the top-RMSD confor-
mation produced by Vina is greater than 2 A, with an
average of 5.17 A (and a standard deviation of 1.12 A)
across the four datasets combined.

The strategy recommended by Vina’s creators to im-
prove its performance is to increase its exhaustive-
ness. Therefore, we have tried to reproduce all the
complexes from our first four datasets after increasing
Vina’s exhaustiveness to 100. Results (averaged over
five runs) are listed in Tables 1-4, under the column
titled “Vinajgp”. They show limited overall improve-
ment, with an average of 4.52 A (and a standard devia-
tion of 0.76 A) across the four datasets. For some com-
plexes, such as 4FIV in the Dhanik dataset, 2D5W in
the Renard dataset, 3MMG in the LEADS dataset and
2ER6 in the Hou dataset, increasing the exhaustive-
ness yields a significant improvement and a successful
reproduction. On the other hand, for other complexes,
such as 1JQ9 in the Dhanik dataset, 1TJ9 in the Re-
nard dataset, 30BQ in the LEADS dataset and 1G7V
in the Hou dataset, we can see a deterioration of the
results. The fact that the standard deviation associ-
ated with these complexes decreased after increasing
Vina’s exhaustiveness suggests that this deterioration
is not due to the inherent randomness of the sampling
process, but to the fact that Vina more consistently
produces “bad” results.

A critical effect of increasing exhaustiveness is a rise
in computing time: Vina’s runtime increases roughly
linearly with respect to its exhaustiveness. Therefore,
we do not report explicit running times (which depend
on the computing platform) and only discuss differ-
ences in computing times through differences in ex-
haustiveness. In our study, increasing exhaustiveness
from 8 to 100 resulted in a 12-fold increase in Vina’s
running times. A legitimate question is thus whether
the limited improvement in results quality achieved
by increasing exhaustiveness is worth such an increase
in computing time. If one was not deterred by the
prohibitive running times, one could increase exhaus-
tiveness beyond 100 and hopefully get better results.
However, our experience and other studies have shown
that, when docking large ligands, increasing Vina’s ex-
haustiveness only results in minor improvements that
quickly plateau [26, 27].

Multi-Vina

We aimed to make better use of computing resources
than is achieved by increasing Vina’s exhaustive-
ness. To that end, we assessed a docking protocol
we call “Multi-Vina”, based on running several inde-
pendent instances of Vina (performing different non-
deterministic conformational searches) in parallel and
grouping their results together. This method generates
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a larger pool of binding modes from which we extract
the top-RMSD conformation.

The first protocol we evaluated involves running 12
instances of Vina, with its exhaustiveness set to 8; we
call it 12xVina. Using 12x Vina requires as much com-
puting resources as using Vinajgg (in terms of CPU
time), but as little time as running Vina (in terms of
wall clock time). The results (averaged over five repli-
cates) we obtained when trying to redock the com-
plexes from our first four datasets with this proto-
col are listed in Tables 1-4, under the column titled
“12xVina”. The overall average and standard devia-
tion across the four datasets are 3.28 A and 0.58 A, re-
spectively. As expected, 12x Vina performs better than
Vina, and interestingly it also performs significantly
better than Vinajgy (see Figure 1) despite using a
similar amount of computing resources. The only com-
plexes for which Vinajgg produced a better result than
12xVina are 1N12 and 1H6W in the LEADS dataset,
as well as 3FVH in the Hou dataset.

To assess the impact of increasing the amount of
computing resources allocated to Multi-Vina, we also
tried to redock the complexes from our first four
datasets using a 24xVina protocol. Results (averaged
over five replicates) are listed in Tables 1-4, under
the column titled “24xVina”. The overall average and
standard deviation across the four datasets are 3 A and
0.49 A, respectively. This is only a small improvement
when compared to results obtained with the 12x Vina
protocol (see Figure 1), especially considering that
computing resources have been doubled.

Finally, to evaluate the full potential of the Multi-
Vina method, we performed redocking experiments
with a 288xVina protocol (where 288 = 12 x 24) on
our first four datasets. However, because of the huge
amount of computing resources required and the very
low expected standard deviation, we performed only
one replicate for this experiment. Results are listed in
Tables 1-4, under the column titled “288xVina”. The
average across the four datasets is 1.83 A, and only
30% of complexes could not be reproduced.

DINC

In its current implementation, DINC can be seen as
an incremental Multi-Vina approach (see Methods sec-
tion). Therefore, we wanted to examine whether this
additional incremental paradigm would give DINC an
advantage over the regular Multi-Vina approach. For
that, we ran five replicates of a redocking experiment
involving all the complexes from our first four datasets.
Results (averaged over the five replicates) are listed
in Tables 1-4, under the column titled “DINC”. The
overall average and standard deviation across the four
datasets are 2.34 A and 0.32 A, respectively. When
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comparing these results to those obtained with the
24 x Vina protocol, one can conclude that DINC seems
to perform better than the Multi-Vina approach. In-
deed, the improvement observed between 24 x Vina and
DINC is much larger than the improvement observed
between the 12xVina and 24 x Vina protocols (see Fig-
ure 1). This comparison is meaningful because, in
terms of computing resources, DINC lies between a
24xVina and a 36xVina protocol.

To assess the full potential of DINC, we collected all
the results from all the redocking experiments we per-
formed when comparing the various DINC protocols
(see Methods section). More specifically, for each com-
plex of our first four datasets, we looked for the mini-
mum RMSD among all the top-RMSD conformations
generated by the replicates of the 15 DINC protocols
we had evaluated (see Methods section). This amounts
to running a Multi-DINC, similar to the Multi-Vina,
except that different instances of DINC may use dif-
ferent parameters. Note that all DINC protocols run
12 Vina instances, except the final one, which runs
24 Vina, instances (i.e., Vina with its exhaustiveness
set to 4) as explained in the Methods section. The re-
sults we obtained by combining all the DINC protocols
together are listed in Tables 1-4, under the column ti-
tled “DINCjes:”. The average across the four datasets
is 1.55 A, and only 17% of complexes could not be
reproduced. Note that the amount of computing re-
sources involved in obtaining the results reported for
DINCyes: is certainly greater than that used by the
288 xVina protocol, although a direct comparison is
not really possible. Despite this fact, we can conclude
that DINC shows a greater potential to reproduce chal-
lenging complexes than the Multi-Vina approach.

PPDbench dataset

As the PPDbench dataset was published after we had
performed our evaluation study [28], we used it only
in a smaller experiment to compare the sampling ca-
pabilities of Vina and DINC’s default protocols (see
Methods section). We performed five replicates of a re-
docking experiment in which we tried to reproduce the
crystal structures of the 89 complexes of this dataset.
The results we obtained are presented in Table 5. Vina
could not reproduce any of these complexes. The av-
erage all-atom RMSD (across the whole dataset) be-
tween the initial crystal structure and the top-RMSD
conformation produced by Vina is 7.7 A with a stan-
dard deviation of 1.01 A. Although DINC was able to
successfully reproduce only 7 complexes, the average
all-atom RMSD it achieved across the whole dataset is
4.17 A, with a standard deviation of 0.45 A. This repre-
sents a significant improvement in comparison to Vina.
Results obtained on this dataset, which contains very
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large peptides (with up to 67 DoFs), illustrate that,
even when using DINC, more sampling is required to
reproduce such challenging complexes.

To illustrate differences between a successful and un-
successful reproduction of a specific complex, we re-
port the best results obtained with Vina and DINC
when trying to reproduce the protein-peptide complex
with PDB code 209V (see Figure 2). The peptide in-
volved in this complex is composed of 69 heavy atoms
and features 15 DoFs. The all-atom RMSD between
the crystal structure and the top-RMSD conformations
produced by Vina and DINC are 5.61 A and 1.1 A,
respectively. As the threshold for success is 2 A, the
binding mode obtained with DINC constitutes a suc-
cessful reproduction of the crystal structure. Figure 2
shows that only the ends of the peptide’s conformation
are not very well aligned with the crystal structure. On
the other hand, the binding mode produced by Vina
corresponds to a totally different conformation.

Discussion

Vina's exhaustiveness

The default value of Vina’s exhaustiveness is 8. When
we increased its value to 100, we obtained better dock-
ing results for many protein-ligand complexes, but not
all of them. One can mostly interpret the effect of rais-
ing exhaustiveness as increasing the amount of sam-
pling performed by Vina during a given run. There-
fore, the fact that increasing Vina’s exhaustiveness can
sometimes lead to a deterioration of the docking re-
sults might be counter-intuitive. However, another ef-
fect of increased exhaustiveness is an enhanced impact
of the scoring function on the final output, as Vina
can spend more time improving the fit of the popula-
tion of binding modes it internally maintains. In other
words, raising Vina’s exhaustiveness increases the bias
of its scoring function on the sampling procedure. If
Vina’s scoring function was perfectly accurate, raising
exhaustiveness would systematically yield better dock-
ing results. Unfortunately, as it is not perfect, Vina’s
scoring function sometimes drives the sampling pro-
cess away from near-native binding modes of a com-
plex. In other cases the scoring function simply favors
an alternative binding mode that is as valid as the one
captured by the crystal structure.

Note that two docking studies focused on protein-
peptide complexes have shown that, despite leading
to huge increases in running times, raising exhaustive-
ness to large values does not produce drastic improve-
ments [26, 27]. Therefore, increasing Vina’s exhaus-
tiveness is clearly not the most effective use of com-
puting resources when trying to improve docking re-
sults. In addition, our results suggest that in the con-
text of a meta-docking approach involving several in-
stances of Vina such as Multi-Vina or DINC, reducing
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exhaustiveness is beneficial. The first benefit is that
it reduces running times. The second benefit is that
it ensures more diversity in the sets of binding modes
produced by all Vina instances, as the bias from the
scoring function is reduced.

Vina’s exhaustiveness controls the number of in-
dependent runs that it performs internally. How-
ever, other parameters might have an impact on the
achieved amount of sampling, such as the number of
steps performed by each run, the length of the lo-
cal optimization within each step, or the optimization
method itself (knowing that Vina uses the Broyden-
Fletcher-Goldfarb-Shanno algorithm). Unfortunately,
the only parameter accessible to Vina’s users is the
exhaustiveness.

The default protocol we have adopted in DINC uses
Vinay, i.e., it runs Vina with its exhaustiveness set to
4. This allows reducing Vina’s running time by half, as
compared to its regular version. In addition, after per-
forming redocking experiments with DINC using either
Vina, or the regular Vina, we observed no significant
change in results quality in terms of all-atom RMSD to
the initial crystal structures. For very few complexes,
using Vina, improved docking results, and for even
fewer complexes, using Vina, deteriorated docking re-
sults. On the other hand, using Vinas clearly dete-
riorated docking results on the four datasets. There-
fore, using Vina, seems to be a good compromise be-
tween achieving computational efficiency and obtain-
ing docking results of good quality.

Parallelized meta-docking

As discussed in the Results section, running several
Vina instances in parallel and grouping their results
together is a more efficient way to improve docking re-
sults than simply increasing exhaustiveness in a single
instance of Vina. First, this kind of parallelized meta-
docking approach is computationally efficient: even if
it uses the same amount of computing resources as
a long Vina run, it is much faster in terms of wall
clock time. Second, with a given computing budget,
the multi-threaded approach provides better docking
results than the single-threaded approach.

This result is most likely not specific to Vina: a par-
allelized meta-docking approach using another dock-
ing tool would probably provide similar benefits. This
was demonstrated, to some extent, by the original
implementation of DINC [11, 17], which involved
AutoDock4. Therefore, to rephrase the above state-
ment in more general terms, it is more effective to com-
bine the results from several short docking runs than
extending a single docking run. This concept should
be familiar to readers of the computational biophysics
literature: better results have been obtained from com-
bining several short molecular dynamics simulations
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together than running a very long simulation [29]. This
paradigm has been applied in numerous fields of com-
puter science, such as genetic programming [30].

Parallelized incremental meta-docking

Despite achieving rather good results, the Multi-Vina
approach failed at reproducing some complexes, even
when using a very large number of threads. On the
other hand, DINC was able to reproduce some of these
complexes. In addition, when using a similar com-
puting budget, DINC provides better docking results
than the Multi-Vina approach. Therefore, the addi-
tion of the incremental paradigm to a simple paral-
lelized meta-docking approach can be considered ben-
eficial. Our understanding is that this is especially true
when the binding site is not at the protein’s surface but
deeper in the protein’s core. Complexes exhibiting this
characteristic are often the results of significant con-
formational changes undergone by the protein receptor
as a result of the docking process in vivo [6]. There-
fore, reproducing their crystal structure might be im-
possible if one keeps the protein receptor rigid while
attempting to dock the ligand in the binding site. More
specifically, because the binding site is so constrained,
it becomes difficult to computationally sample confor-
mations of the whole ligand within it. On the other
hand, docking a smaller fragment of this ligand and
growing it in the binding site can be easier.

After evaluating several docking protocols in DINC,
we had to conclude that none of them systematically
performed best. Compared to the others, each proto-
col improves the docking results for some complexes
and deteriorates them for other complexes. Therefore,
we chose as a default protocol for our latest version
of DINC the one providing a good trade-off between
docking accuracy and computational efficiency. This
protocol involves three rounds of incremental docking
using Vinay; it was evaluated with 24 threads. To ob-
tain better docking results, one can simply increase
the number of threads. In addition, if enough comput-
ing resources are available, one can easily implement
a Multi-DINC method in which the various DINC in-
stances would use different protocols. The beauty of
such a meta-docking strategy is that it can be imple-
mented with as many levels as computing resources
permit. As illustrated by our results, in this way, most
protein-ligand complexes, even challenging ones in-
volving large ligands, can be reproduced.

Additional conformational sampling

The docking protocols we have presented can be com-
bined with other techniques providing additional con-
formational sampling of a protein-ligand complex. For
example, one could envision exploring the conforma-
tional space around binding modes produced by a
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docking protocol using molecular dynamics (MD) sim-
ulations. As simulating binding with MD is very ex-
pensive, MD has mostly been used for post-docking
relaxation [31-34] or ensemble docking [35-37]. To
ensure broader sampling of MD simulations, several
strategies have been proposed, such as enhanced sam-
pling (e.g., umbrella sampling, metadynamics, replica
exchange) [38] or accelerated MD [39, 40].

Conclusions

In this study, we have assessed the sampling power of
several docking protocols involving the popular molec-
ular docking tool Vina. More specifically, we have eval-
uated Vina with increased exhaustiveness, a protocol
involving several instances of Vina running in paral-
lel, called Multi-Vina, and our parallelized incremental
meta-docking approach using Vina, called DINC. For
this evaluation we have performed redocking experi-
ments, trying to reproduce crystal structures of chal-
lenging protein-ligand complexes with large ligands.
The five datasets we have used come from similar stud-
ies and contain complexes that classical docking tools
could not reproduce. To try and separate as much as
possible the sampling challenge from the scoring chal-
lenge, our assessment of docking results was based on
evaluating the all-atom RMSD between the original
crystal structure of a complex and the top-RMSD con-
formation generated by a docking approach for this
complex. The rationale was to assess whether a dock-
ing approach could produce binding modes that were
close enough to a native conformation, irrespective of
whether the scoring function could select these binding
modes as being the most favorable ones.

Our results show that increasing Vina’s exhaustive-
ness yields limited improvement, with few complexes
being reproduced using this approach. Therefore, when
dealing with large ligands, the increase in computing
costs incurred from raising Vina’s exhaustiveness is not
worthy of this small improvement in docking accuracy.
Running several short Vina instances and grouping
their results together in a Multi-Vina approach seems
to be a better use of additional computing resources.
Indeed, using this approach yields significant improve-
ment in docking accuracy, with numerous complexes
being successfully reproduced. However, even when us-
ing a very large number of threads, about a third of
complexes still remain too challenging for the Multi-
Vina approach. On the other hand, our incremental
meta-docking approach, DINC, can successfully repro-
duce the vast majority of complexes studied here, al-
beit only when using a huge amount of computing re-
sources for some of these complexes. In general, even
when using a more reasonable amount of computing re-
sources, DINC performs significantly better than the
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Multi-Vina approach, given a similar computing bud-
get.

In conclusion, this study clearly demonstrates the
benefits of using parallelized docking approaches, as
well as incremental docking approaches such as our
meta-docking tool DINC, to solve the sampling chal-
lenge associated with the docking of large ligands, in-
cluding peptides. More generally, our results illustrate
that conformational sampling is not really a challenge
anymore, contrary to what transpires from previous
similar studies [25-27]. The real challenge of molecular
docking resides on improving scoring functions. In fact,
methods such as Multi-Vina or DINC incur additional
computing costs required to counter the bias imposed
by the scoring function on the sampling procedure. For
now, the solution we suggest is to use a meta-docking
approach to generate a large pool of binding modes by
grouping the results from several independent docking
runs. The benefit is that this pool of binding modes can
then be re-scored, using a scoring function that is more
computationally-expensive but more accurate than the
fast functions typically used by protein-ligand docking
tools. We are planning to evaluate such re-scoring tech-
niques in future work, as well as the consensus scoring
paradigm [41].

Methods
DINC - Docking incrementally
DINC is a parallelized meta-docking method devel-
oped for the incremental docking of large ligands to
protein receptors. The rationale for the method and
its implementation have been described in previous
publications [11, 17, 20]. The newest version of DINC,
called DINC 2.0, has been made available online as
a web server [23, 24]. In short, DINC is based on a
divide-and-conquer approach enabling the docking of
large ligands containing too many flexible bonds to be
efficiently docked by traditional protein-ligand dock-
ing tools. The idea behind DINC is to incrementally
dock larger and larger overlapping fragments of a lig-
and instead of docking it all at once. The workflow of
the algorithm is illustrated in Figure 3.

Given a ligand, DINC’s algorithm starts by selecting
a subset of the ligand’s flexible bonds to be explored,
executing the sampling and scoring of this first frag-
ment. Then, several docked conformations of this frag-
ment are selected for expansion. During this process,
the selected conformations are “grown” so as to include
an additional subset of flexible bonds from the original
ligand. This is defined by one of DINC’s parameters,
which determines how many new flexible bonds are
added at each round of docking. The expanded frag-
ments are then used as input for a second round of
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sampling and scoring. This process is incrementally re-
peated until all the flexible bonds of the original ligand
have been explored.

The number of flexible bonds that are explored in
each round of docking is a key parameter for the suc-
cess of the incremental process. Although the number
of atoms and bonds composing the fragments increases
from one round to the next, the number of bonds that
are considered flexible and are effectively sampled is
kept constant. In DINC, this parameter is referred
to as the fragment size. Instead of defining the frag-
ment size and the number of new flexible bonds (which
then automatically determines the number of docking
rounds), it is possible to define the number of docking
rounds and new flexible bonds in DINC (which then
automatically determines the fragment size). Note that
different heuristics can be used to decide which bonds
will be active at each round, and which previously-
explored bonds will be kept rigid. The important point
is that, by keeping only a subset of bonds active at
each round, DINC enables the efficient sampling and
scoring of the growing fragments.

Another key aspect of the DINC approach is paral-
lelism. At each round of the incremental process, mul-
tiple attempts at docking a given fragment are per-
formed independently in parallel. Then, all generated
conformations are grouped together, and a subset of
this conformation pool is selected for expansion and
for the next docking round. In DINC, the parame-
ter driving this behavior is referred to as the num-
ber of docking tasks, or simply the number of threads.
Through parallelism, the amount of sampling at every
round is greatly increased without affecting the overall
running time. DINC can run on a desktop computer
using multiple threads, and is also well-suited for high-
performance computing systems.

DINC is also a meta-docking approach, in the sense
that it relies on regular docking tools to perform the
sampling and scoring tasks at each docking round.
DINC itself only manages the parallelism, the genera-
tion of the fragments and the selection of active flexi-
ble bonds. In its original version, DINC relied solely on
AutoDock4 [22]. The newest version of DINC, which
we evaluate in this study, involves the popular dock-
ing tool Vina [21]. As two docking tools are available
in DINC, it is now possible to use separate tools for
sampling and scoring tasks. More generally, DINC is a
highly customizable tool in which all parameters can
be tuned.

Docking protocols

The first docking protocol we evaluated involves only
Vina and was aimed at studying the effects of vary-
ing Vina’s exhaustiveness. This parameter defines how
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long Vina will run by setting the number of inde-
pendent runs that are performed internally, starting
from random conformations of the ligand; its default
value is 8. We increased it to 100, in a docking pro-
tocol that we refer to as Vinaqgg, to evaluate whether
this would improve Vina’s performance. While vary-
ing Vina’s exhaustiveness we kept its other parame-
ters constant, but we did not use their default value.
For the num_modes parameter, which defines the maxi-
mum number of binding modes that Vina can produce,
we used a value of 25 instead of 9. For the energy_range
parameter, which defines the maximum energy differ-
ence (in kecal/mol) allowed between the best and worst
binding modes produced by Vina, we used a value of
10 instead of 3. Increasing the energy range and the
maximum number of binding modes returned by Vina
enabled us to rely less on its scoring function when
analyzing its output.

We call the second docking protocol we evaluated
Multi-Vina. It consists of running several independent
instances of Vina in parallel and grouping their results
together. This allows obtaining a larger set of binding
modes that can be analyzed to evaluate the success of
docking. In this context, we set Vina’s exhaustiveness
to 8; we kept its num_modes and energy_range param-
eters at 25 and 10, respectively. We varied the number
of Vina instances from 12 to 24, to 288 (= 12 x 24),
in docking protocols that we refer to as 12xVina,
24xVina and 288 xVina, respectively.

We then evaluated our parallelized incremental
meta-docking tool, DINC. As DINC involves several
parameters defining its incremental process, we wanted
to assess which set of parameter values (i.e., which
DINC protocol) would produce the best results. First,
we varied the fragment size using the values 6, 12, 18,
24 and 30, while keeping all other parameters fixed:
12 threads and 3 new bonds at each docking round.
Unfortunately, no fragment size value seemed to sys-
tematically produce the best results. Then, instead of
using a fixed fragment size (which would result in a
varying number of docking rounds based on the lig-
and’s number of flexible bonds) we decided to evalu-
ate DINC protocols in which the number of docking
rounds was fixed (therefore making the fragment size
vary depending on the ligand). As number of docking
rounds, we used the values 2, 3 and 4. For each value,
we varied the number of new bonds at each docking
round from 1 to 2 to 3. This resulted in 9 DINC proto-
cols, each one running 12 threads. Overall, the protocol
involving 3 rounds of docking with 3 new bonds at each
round seemed to be performing best. However, better
results were obtained for numerous complexes using
other protocols. We do not present all these results
here. We only report results achieved by DINC using
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what has now become our default protocol: 3 rounds
of docking, with 3 new bonds, using 24 threads. Note
that in all the DINC protocols we mentioned, we kept
Vina’s num_modes and energy _range parameters at 25
and 10, respectively. On the other hand, we varied its
exhaustiveness: reducing it from 8 to 4 did not seem
to affect the docking results, contrary to reducing it
to 2, which decreased docking accuracy. Therefore, to
be more computationally efficient, the default DINC
protocol now involves Vinay, i.e., Vina with its exhaus-
tiveness set to 4.

Evaluation methodology
To evaluate all the docking protocols we perform re-
docking experiments, in which we try to reproduce the
crystal structure of protein-ligand complexes obtained
from the Protein Data Bank (PDB) [42]. This requires
processing the PDB files, following a standard proce-
dure in the docking field: 1) removing water molecules;
2) if several instances of the complex are present in the
PDB file, conserving only the first instance; 3) for each
complex, separating the ligand from the protein and
saving both molecules in separate PDB files that can
be given as input to a docking tool. The preparation
of the ligand and protein receptor is done using the
scripts prepare_ligandj and prepare_receptor from the
AutoDockTools4 suite [22]. The operations performed
by these scripts are: removing lone atoms, adding polar
hydrogens, removing non-polar hydrogens, and adding
Gasteiger charges. At the beginning of the docking pro-
cess performed by DINC, similar to many other dock-
ing tools, the conformation of the given ligand is ran-
domized. The objective of the redocking experiment
is to assess whether the docking tool can produce a
binding mode for the ligand in the protein’s binding
site that is similar to the initial crystal structure.
The similarity between two binding modes of a
protein-ligand complex (whether a computationally-
generated binding mode or a crystal structure) is usu-
ally assessed by calculating the Root Mean Square De-
viation (RMSD) between them. Several ways of calcu-
lating RMSD values have been reported in the molec-
ular docking literature. Here, we use the strictest defi-
nition of the RMSD by calculating its values using all
the heavy atoms of the ligand. This means measuring
changes in the conformation, as well as in the position
and orientation of the whole ligand within the protein’s
binding site. As the protein is kept rigid and in a fixed
position during the docking process, no alignment is
required between two binding modes to calculate the
RMSD between them. Note that a more lenient defi-
nition of the RMSD that is often used in related work
consists of using only the backbone atoms of the lig-
and; in this case, changes in side-chain conformations
are mostly ignored.
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Similar to other docking tools, DINC produces sev-
eral binding modes for a given protein-ligand com-
plex as a result of the docking process. Therefore,
there exists several ways to assess whether a dock-
ing tool was successful at reproducing a given crystal
structure. If users decide to fully rely on their tool’s
scoring function, they might decide to calculate the
RMSD between the initial crystal structure and the
binding mode that receives the best score, i.e., the
so-called top-scoring conformation. A common thresh-
old used to determine whether the crystal structure
was successfully reproduced is 2 A. Instead of con-
sidering only the top-scoring conformation, users can
also check whether any of a small number of bind-
ing modes among those with the best scores have an
RMSD of less than 2 A from the crystal structure. In
this study, as we want to evaluate the sampling power
of the docking protocols, we calculate the RMSD be-
tween the crystal structure and all the produced bind-
ing modes, irrespective of their score, and we deter-
mine which one is the closest to the crystal structure,
i.e., the so-called top-RMSD conformation. We con-
sider that a given crystal structure has been success-
fully reproduced if the top-RMSD conformation is less
than 2 A away from it. This is common practice in the
molecular docking field, which allows evaluating the
sampling power of a docking tool independently (to
some extent) of its scoring power.

Datasets of protein-ligand complexes

For this study, we define five datasets containing
protein-ligand complexes involving large ligands, some
being peptides. These datasets comprise complexes in-
volved in previous evaluations of molecular docking
tools performed by several research groups. We restrict
our datasets to complexes that some of these tools can-
not reproduce. Our goal is to perform an indirect com-
parison between these tools and our own docking tool,
DINC, by showing that it can reproduce most of these
complexes.

Dhanik dataset. Our first dataset is a small subset
of the one on which the original version of DINC was
evaluated [11, 17]. The complete dataset contains 73
protein-ligand complexes extracted from an old ver-
sion of the PDBbind database [43]. Results in [11, 17]
show that DINC and AutoDock4 could reproduce the
crystal structures of only 31 of these complexes, when
considering top-RMSD conformations. The remaining
42 complexes could have thus been considered chal-
lenging. However, after running redocking experiments
with the most recent version of Vina (using its default
parameters), we realized that some of these complexes
were actually not very challenging. Therefore, we re-
moved from the dataset all the complexes that Vina
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could reproduce, when considering top-RMSD confor-
mations. We also discarded the complexes featuring
more than one ligand in the protein’s binding site.
Eventually, we obtained a dataset containing 19 com-
plexes, with ligands having between 7 and 30 rotatable
bonds (see Table 1).

Renard dataset. Our second dataset is a subset of a
meta-dataset compiled from previous studies with the
objective of assessing the ability of Vina to dock small
peptides [27]. The original meta-dataset contains 47
complexes involving peptides with up to five amino
acid residues. Results in [27] show that Vina could pro-
duce top-RMSD conformations that were similar to the
crystal structure of only about half of these complexes.
However, since these results were based on RMSD val-
ues calculated only for backbone atoms of the pep-
tides, we performed our own redocking experiments to
evaluate which complexes were really challenging. Af-
ter discarding the complexes that already belonged to
our first dataset, we were left with a set of 26 com-
plexes (involving peptides having between 10 and 22
rotatable bonds) that Vina was not able to reproduce,
even when considering top-RMSD conformations (see
Table 2).

LEADS dataset. Our third dataset is a subset of
LEADS-PEP, which currently contains 53 protein-
peptide complexes involving peptides composed of 3
to 12 residues [26]. LEADS-PEP was created as an
unbiased benchmark dataset for researchers wanting
to assess the efficacy of molecular docking tools on
peptides. It was used to evaluate four protein-ligand
docking tools: GOLD, Surflex-Dock, AutoDock4 and
Vina [26]. Results show that, in spite of not being
specifically aimed at peptides, these four tools were
able to perform quite well with small peptides com-
posed of 3 or 4 residues. However, they all showed poor
performance on larger peptides, even when considering
top-RMSD conformations, and despite the fact that re-
ported RMSD values were calculated using only back-
bone atoms. Therefore, we removed from the dataset
complexes containing small peptides, as well as com-
plexes already present in previous datasets. The re-
sulting dataset contains 33 complexes involving pep-
tides having between 11 and 52 rotatable bonds (see
Table 3).

Hou dataset. Our fourth dataset is a small subset of
an extensive dataset used to evaluate ten molecular
docking tools, including AutoDock4 and Vina [25]. The
complete dataset contains 2002 protein-ligand com-
plexes extracted from a recent version of the PDB-
bind database [44]. Results in [25] clearly show that all
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docking tools struggle with neutral ligands and large
ligands, such as peptides. Interestingly, a set of 72 com-
plexes could not be reproduced by any of the tested
docking tools, even when considering top-RMSD con-
formations, and are, therefore, ideal candidates for our
evaluation of challenging protein-ligand complexes. Af-
ter discarding from this small set complexes involving
more than one ligand in the binding site and complexes
involving ligands with less than 7 rotatable bonds, we
were left with a dataset containing 28 complexes in-
volving ligands with 7 to 31 rotatable bonds (see Ta-
ble 4).

PPDbench dataset. Our fifth dataset was published
after we carried out our benchmarking. Therefore, we
used it only for a smaller experiment to compare re-
sults obtained with Vina and DINC using their de-
fault parameters. The original PPDbench dataset was
involved in a study comparing the performance of six
molecular docking tools: ZDOCK, FRODOCK, Hex,
PatchDock, ATTRACT and pepATTRACT [28]. It
was created by combining two smaller datasets pub-
lished in previous studies, and contains 133 protein-
peptide complexes composed of 9 to 15 amino acids.
After discarding from the original dataset the com-
plexes involving more than one ligand in the binding
site, we obtained a dataset containing 89 complexes
involving peptides with 13 to 67 rotatable bonds (see
Table 5).

Evaluation platform

We ran all our docking jobs on the Comet cluster,
from the San Diego Supercomputer Center, through
an Extreme Science and Engineering Discovery Envi-
ronment (XSEDE) allocation [45]. Comet features In-
tel next-gen processors with AVX2, Mellanox FDR In-
finiBand interconnects and Aeon storage. Its compute
nodes consist of Intel Xeon E5-2680v3 processors, 128
GB DDR4 DRAM, and 320 GB of SSD local scratch
memory. Each node contains 24 cores, with a clock
speed of 2.5 GHz, a flop speed of 960 GFlop/s and a
memory bandwidth of 120 GB/s.

List of abbreviations

DINC  docking incrementally

DoF degree of freedom

MD molecular dynamics

PDB protein data bank

RMSD root mean square deviation
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Figure 1 Average RMSD achieved by the docking protocols.
For each docking protocol, we report the all-atom RMSD
averaged over all complexes from the first four datasets. For
Vina, Vinajpo, 12xVina, 24xVina and DINC, we also report
the corresponding standard deviation.

Tables
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Figure 2 Binding modes predicted by Vina and DINC for the protein-peptide complex with PDB code 209V. The protein
receptor is represented by a grey surface in both images. The conformation of the peptide ligand as reported in the 209V PDB entry
is represented by blue sticks in both images. The best result obtained when redocking this peptide with Vina is represented by yellow
sticks in the left-hand side image; the all-atom RMSD between this conformation and the blue one is 5.61 A. The best result
obtained when redocking this peptide with DINC is represented by red sticks in the right-hand side image; the all-atom RMSD
between this conformation and the blue one is 1.1 A; only the ends of the peptide are not well aligned with the crystal structure.
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Figure 3 Workflow of the DINC algorithm on a specific example. DINC starts by selecting a small fragment of the input ligand
(Fragment 0), with only k flexible bonds, and uses it as input for the first round of docking with Vina. The best binding modes are
selected for expansion: they are “grown” by adding a small number of atoms. These new fragments are then docked in parallel using
Vina. The process is repeated incrementally, until the entire input ligand has been reconstructed and is docked in the binding site.
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Table 1 Results of the redocking experiments performed on the Dhanik dataset. For each complex in the dataset, we first list its
identifier in the protein data bank (PDB ID), its number of rotatable bonds, i.e., degrees of freedom (DoFs), and its number of heavy
atoms. Then, we list the average all-atom RMSD (over five replicates) associated with the top-RMSD conformation produced by Vina,
Vinaigo, 12xVina, 24xVina, and DINC (see the Results section for explanations on these docking protocols), as well as the standard
deviation. Finally, we list the all-atom RMSD associated with the top-RMSD conformation produced by 288xVina and DINCys;.

PDB ID DoFs atoms Vina Vinaioo 12xVina 24xVina DINC 288xVina  DINCpes¢
2FZC 7 18 351 4+045 354+020 280+031 277 +024 276+ 0.24 2.24 2.24
1TYR 8 22 517 +£1.66 4.17 +£1.73 277 +0.16 235+0.28 1.824+0.26 1.81 1.62
1v20 10 30 3.534+0.07 327 +022 265+023 258+£0.19 239+ 0.18 2.17 2.17
2DRC 10 33 719+ 039 7.69+ 064 351+269 3304256 1.06+ 0.18 1.00 0.97
INWL 11 31 531 £1.08 519+182 3.03+£061 2234050 1.49 +0.11 1.61 1.18
1ELB 13 33 456 + 0.13 4.48 +0.03 335+058 2724057 218+ 0.28 2.20 1.90
3GSS 18 39 529 +1.09 496 +0.70 3.15+1.12 273+0.97 3.10+ 0.20 1.74 1.61
11S0 18 47 590 + 134 337+080 3.44+055 220+0.71 220+ 0.33 1.36 1.32
1A1B 19 39 3.034+028 318+ 047 240+040 197 4+053 197 +041 1.27 1.27
1JQ9 20 47 799 +£220 951 +021 5414139 548+177 2904+ 0.15 2.46 2.46
4FIV 20 58 277 £128 111 +£050 079+ 036 0.60+0.03 0.62 + 0.09 0.55 0.49
4ER2 22 48 3424+ 045 240+075 230+060 198+ 049 1.55+ 0.09 1.35 1.33
1G7Q 22 57 399 £135 201+115 223+1.01 148 + 020 1.10 £+ 0.07 1.11 0.98
1SLG 23 59 730+ 179 6.43+217 376+142 3134+1.01 236+0.10 2.13 1.91
1FZK 23 68 6.64 + 072 394+184 426+176 1944062 120+ 0.15 1.37 1.11
2ER9 25 65 287 £039 267 +029 209 +021 2104+ 0.34 1.87 +£0.11 1.52 1.52
1FKN 29 63 467 +1.27 356 +038 3.08+0.14 283+0.22 211+0.28 2.08 1.75
1PZ5 29 67 554 +0.81 6.28+0.10 4.69+0.73 449 +0.22 3.16 +0.29 3.90 1.87
1FOO0 30 70 736 +1.22 478 +1.08 3.29+183 2924157 1.05+0.19 1.04 0.73

average 505+ 095 4354079 3.11+085 2624069 194+ 0.20 1.73 1.50
Table 2 Results of the redocking experiments performed on the Renard dataset. Description as in Table 1.

PDB ID DoFs atoms Vina Vinaigo 12xVina 24xVina DINC 288xVina  DINGCpess
2FIB 10 30 203 4+0.12 134+024 1.19+039 131+045 0.81+0.13 0.70 0.70
2PQ2 11 26 445+ 063 4.20+059 352+061 3.124+0.06 3.02+0.08 2.66 1.76
1SUA 11 27 2884+092 185+029 190+ 025 1.74+0.13 0.98 + 0.10 1.20 0.96
INVR 12 29 3.24 £1.02 317 £1.11 114 +0.16 120+ 0.19 1.20 +0.18 0.74 0.74
2FNX 14 29 5.04 £ 031 474+£039 392+036 289+063 283+0.25 1.60 1.60
1TJ9 14 30 3.66 +1.17 573 +024 232+4+0.18 213+0.13 2.02+0.10 1.53 1.53
2DQK 14 33 424 + 044 392+0.16 3.51+034 3414039 242+0.37 2.00 2.00
1GYB 14 36 296 + 134 422+039 174+0.18 1.64+085 1.02+ 0.15 0.81 0.81
1TK4 15 30 6.66 + 1.25 7.70 £0.39 483 +0.54 3.46+ 092 287 +0.75 2.03 1.78
1NXO0 15 32 420+ 0.86 3.61 £0.22 3.45+0.03 3.26+0.09 3.05+0.35 1.21 1.21
1BE9 15 35 470+ 184 341+186 1.38+0.23 1.214+0.27 1.25+0.23 0.85 0.85
1PAU 16 35 322+£010 168+ 0.13 1.46+0.13 147 4+0.17 1.22 +0.10 1.14 1.01
1IHJ 16 39 414 +1.14 477 +£042 243+069 2554+066 1.83+0.25 1.49 1.49
1JQ8 16 40 705+ 170 6.31 +080 455+063 4.22+4+0.13 197 +0.12 1.89 1.68
2HPL 17 41 3354+ 067 260+040 178+ 034 1514036 152+ 0.35 0.98 0.98
2GNS 18 41 2534+ 117 209+017 198+ 0.07 1.64+0.30 1.58+ 0.20 1.15 1.15
2D5W 19 37 478 +261 143+0.10 1.38+0.08 1.33+4+0.06 1.16 + 0.12 1.14 1.14
1TJK 19 41 850+ 091 935+0.72 7314+0.15 6.79+1.09 428+ 0.15 1.22 1.22
1JWG 19 43 495+ 051 6.03+1.12 338+0.75 338+0.76 243 +0.08 2.16 1.78
2DUJ 19 43 340 £ 051 299 +0.27 221+ 0.34 228+0.14 224+ 0.06 1.65 1.65
1TG4 19 46 8.97 £ 037 866+ 020 7.82+025 7.78+0.11 350+ 0.79 0.77 0.77
1SP5 20 46 423+1.13 5294+0.16 1.69+ 065 1.344+0.13 1.14 + 0.07 1.01 1.01
1W9E 20 52 591 £161 459+254 319+129 2234095 232+ 0.54 1.54 1.54
1FCH 21 45 382+132 500+£176 193+035 203=+060 1.85+ 0.45 1.07 1.07
1BHX 21 46 447 + 052 438+085 3.36+066 260+ 035 286+ 0.56 1.33 1.33
2H9M 22 41 405+ 099 333+062 281+024 2254065 246+ 0.03 1.43 1.35

average 452+ 097 432+0.62 293+0.38 264+ 041 207 +0.25 1.36 1.27
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PDBID DoFs atoms Vina Vinaioo 12xVina 24xVina DINC 288xVina  DINCpegs;
1UOP 11 32 2.42 £1.56 1.61 +£ 0.14 1.07 £ 0.10 1.01 £ 0.12 1.09 4+ 0.14 0.62 0.62
2HPL 17 41 2.41 4+ 0.26 241 4+ 043 173 +£0.21 140 £0.11 1.62 £+ 0.33 1.08 1.08
4V3I 18 41 5.44 £+ 0.67 4.68 + 0.18 4.28 + 0.36 3.58 £ 0.90 3.90 £ 1.03 2.00 2.00
30BQ 19 62 491 £+ 2.12 7.87 £ 047 433 +£0.73 4.08 £ 091 2.67 £ 1.02 1.29 1.29
3LNY 20 44 426 +1.31 7.44 + 481 2.04 4+ 0.16 1.88 £ 0.07 1.86 + 0.06 1.37 1.37
3D1E 20 45 541 £+ 2.41 548 £ 233 230 + 0.61 226 £ 041 198 +0.34 1.27 1.27
2W0zZ 20 67 4.16 + 1.47 468 +£ 0.05 3.31 +1.12 2.64 + 0.38 2.67 £+ 0.64 1.10 1.10
1Svz 21 55 3.20 £ 1.05 1.70 £ 0.51 1.38 4+ 0.22 1.44 +£0.20 1.40 4+ 0.04 0.79 0.79
3Q47 22 53 2.75 £ 1.55 1.13 £0.16 1.01 £0.12 0.95 + 0.09 0.92 £ 0.08 0.76 0.76
3IDG 23 53 4.65 + 0.39 292 4+ 0.86 3.09 £0.16 2.63 +0.46 187 +£0.14 1.75 1.57
3UPV 24 55 4.56 4+ 0.69 3.64 £ 157 1.88 + 0.56 1.36 £ 0.27 2.33 4+ 0.80 1.14 1.14
3CH8 24 66 2.70 £+ 2.29 1.00 £ 0.26 0.89 £ 0.22 0.86 = 0.13 0.70 £ 0.04 0.67 0.60
4Q6H 25 51 8.34 + 0.45 7.89 + 0.23 4.99 4+ 0.89 5.19 +1.38 3.93 £ 0.20 3.72 1.81
3NJG 26 58 5.01 £ 2.77 146 £ 0.16 1.25 4+ 0.13 1.25 £0.09 1.09 £ 0.18 1.07 0.99
1ELW 26 60 428 +1.38 483+ 046 3.42+0.29 293 +£046 3.13+0.29 2.31 2.31
4QBR 27 53 2.72 + 0.53 242 + 0.44 150 £ 0.26 151 £0.20 1.37 £0.16 1.16 1.16
IN7F 27 62 1246 £ 0.79 1248 £0.71 9.92 + 1.97 9.96 + 0.39 6.89 £+ 0.56 6.38 3.77
3MMG 29 60 5.28 + 2.93 1.72 £ 0.37 1.58 £ 0.35 1.86 £ 0.29 1.16 + 0.21 1.16 1.16
2002 32 68 4.98 4+ 0.70 5.06 + 0.73 4.32 £ 0.65 436 + 0.34 2.83 4+ 0.25 3.18 1.97
3BRL 32 68 7.23 £ 0.34 7.15 +1.27 5.03 +£0.33 4.49 £ 0.79 3.36 = 0.57 2.92 1.46
2W10 32 90 8.17 + 2.77 7.52 +1.32 3.83 + 0.97 3.21 £ 0.25 3.16 £ 0.69 2.15 2.15
4EIK 34 86 4.06 4+ 0.96 1.94 +£ 053 1.75 4+ 0.44 1.81 £ 0.25 1.35 4 0.22 0.98 0.98
4DS1 35 7 7.34 £ 2.16 7.324+239 4.49 +1.89 514 £ 031 1.35+0.19 1.17 1.17
INTV 39 89 5.84 4+ 0.82 5.67 £ 1.22 4.03 £ 1.08 4.07 £ 021 3.92 + 0.58 1.85 1.85
1N12 40 85 10.04 £+ 2.88 275 +121 439 +1.65 3.77 £1.72 4.05 £+ 1.57 1.84 1.44
2QAB 41 79 6.22 £ 0.74 5.79 £ 0.62 4.75 £ 0.25 452 + 037 5.16 + 0.28 3.90 3.90
3DS1 41 95 6.19 4+ 0.12 5.94 + 0.48 5.15 £ 0.32 434 + 137 3.65+ 1.02 1.73 1.73
1H6W 42 85 11.98 + 0.94 8.19 +£3.88 9.68 £0.93 10.12 £0.15 1.57 £ 0.20 2.38 1.57
3BFW 43 89 6.52 £ 1.72 219 £1.44 298 + 0.89 264 £1.18 349 + 1.06 1.59 1.41
2XFX 43 90 6.22 + 1.44 456 +1.26 4.30 + 0.99 3.024+ 095 252+ 0.67 1.72 1.11
4DGY 44 98 6.88 £ 0.90 496 + 1.13 3.27 £ 1.09 429 £ 0.39 3.39 + 0.96 1.93 1.93
4J8S 50 102 6.04 + 1.36 6.03 + 0.41 5.10 £0.31 472 +£0.23 4.54 + 0.38 4.45 2.96
2B9H 52 101 8.20 £+ 3.14 8.49 £ 258 5.39 + 0.48 4.70 +£ 0.35 4.13 4+ 0.40 3.56 3.56

average 5.78 + 1.38 482+ 1.05 3.59 4+ 0.63 3.39 £ 0.48 2.70 £ 0.46 1.97 1.64
Table 4 Results of the redocking experiments performed on the Hou dataset. Description as in Table 1.

PDB ID DoFs atoms Vina Vinaioo 12xVina 24xVina DINC 288xVina  DINCpest
2W5G 7 38 529 + 211 384 +223 220+0.72 146 +055 1.09+ 0.05 0.84 0.84
3EB1 8 30 560 £0.16 572+ 0.03 4.68 £+ 0.44 4524+ 0.17 3.01 £ 0.57 4.23 1.96
2BVR 9 31 578 £ 0.87 479 +£035 4.08+0.60 3.69+ 061 3.55%+ 0.57 3.03 1.90
3AAQ 9 42 2304+ 021 176+070 156+ 050 0.96+ 047 2.07 +0.10 0.55 0.55
3UIL 10 14 778 £ 059 878058 6.22+029 6.30+0.15 279 +£0.21 3.05 2.56
3USX 12 16 6.78 +£ 0.25 6.92 £0.17 584+ 042 5454061 289+ 0.84 2.72 2.05
1G7V 12 29 336 +058 536+036 2344041 237+024 243+ 0.27 1.87 1.72
3DRI 13 42 813 £091 851+ 117 546+ 1.09 4.154+ 0.37 3.46 £ 0.45 3.90 2.94
3EAX 14 48 593+ 063 6.16 £043 529+ 0.19 520+045 485+ 0.23 4.41 4.29
3ROY 15 50 446 + 052 4.86 +0.05 4.07+£0.10 3.93+4+0.04 3.85+0.10 3.89 3.34
4FNN 16 20 387 £1.01 423+053 246+049 2314+040 1.75+0.23 1.42 1.42
2BVS 17 42 462+ 110 4.11+0.16 3.31+060 3.294+0.70 3.01+ 0.69 2.06 2.06
3FVH 18 53 487 020 1.46 +£0.20 4.214+0.10 3.61 +0.44 3.07+0.29 2.90 2.23
1SH9 18 56 473+316 163+037 155+041 1.394+0.17 1.25+0.07 0.82 0.82
1STR 20 64 2734+08 329+113 2.06+030 1.74+024 1.85+0.12 1.37 1.37
2CE9 20 68 546 £1.76 6.96 + 026 270+ 2.05 246+ 1.72 1.28 £ 0.15 0.86 0.86
3GX0 21 50 527 +£0.76 412+079 2454+0.71 264 +118 1.76+ 0.10 1.63 1.63
3JZH 21 54 713+ 031 823+0.89 657+013 6.61+0.12 515+ 153 4.93 2.48
4E67 22 68 254 £086 262+ 0.18 1.08+0.30 1.1240.21 1.24 +0.25 0.63 0.63
3H89 23 81 518+ 091 581 +£010 3.46+0.29 4.00+098 164 +0.31 2.71 1.33
2HKF 25 70 5690 + 130 3.16 £0.78 2.62+0.88 1.99+ 0.67 1.67 + 0.30 1.25 1.25
4GAH 27 71 6.17 £ 224 334 +£0.74 3224081 292+066 208+ 0.24 1.51 1.51
3IFL 27 76 435+ 032 396+0.13 3.08+047 2334+0.31 232+0.06 1.72 1.72
4EZX 28 72 5,56 +0.94 6.20 +£0.18 5.27 +0.68 5.29 +£0.18 3.32 + 0.58 3.29 2.23
3URI 28 79 517 £122 258+091 215+028 184+030 1.76 £ 0.15 1.45 1.45
1BAI 29 75 379 4+194 220+£025 1.78+0.32 1.84+0.14 1.74+ 0.09 1.36 1.36
2ER6 30 78 575+ 184 158+ 006 220+0.81 1654+ 0.16 1.50+ 0.11 1.26 1.26
1M4H 31 76 498 +£253 292+064 2294035 219+0.64 2.08+0.16 1.51 1.51

average 512 £1.07 447 +051 336+053 3124046 244+ 0.32 2.18 1.76
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Table 5 Results of the redocking experiments performed on the PPDbench dataset. For each complex in the dataset, we first list its

identifier in the protein data bank (PDB ID), its number of rotatable bonds, i.e., degrees of freedom (DoFs), and its number of heavy
atoms. Then, we list the average all-atom RMSD (over five replicates) associated with the top-RMSD conformation produced by Vina
and DINC using their defaults parameters.

PDBID DoFs atoms Vina DINC
2HO2 13 71 758 £1.30 2.64 +0.41
209V 15 69 6.07 = 0.29 1.98 £+ 0.77
30BQ 19 62 7.50 £ 0.70 2.52 +0.93
1CKA 22 65 6.78 + 0.18 2.68 + 0.49
2A25 23 60 10.65 & 1.54 1.45 + 0.98
2R9Q 24 59 593 £ 0.72 2.25 +0.22
4H4F 25 72 3.75+0.20 1.05 £+ 0.03
1SSH 25 76 8.31 = 1.04 5.04 & 0.30
3TJV 26 63 5.45 +1.78 1.43 £+ 0.05
3ERY 27 70 6.26 = 1.55 3.10 & 0.38
3I5R 27 70 5.71 +0.24 3.67 = 0.63
1IMFG 29 71 727 £1.78 3.88 +0.13
1YWO 29 80 6.89 &+ 1.66 3.50 & 0.23
1QKZ 30 62 5.63 +1.71 2.82 4+ 0.39
1K5N 30 64 466 + 0.99 2.84 + 0.63
10AI 30 66 7.75 £ 0.28 3.03 £ 0.43
1U00 30 71 7.01 £1.08 2.20 + 0.15
1RST 30 76 7.16 +£ 0.36 4.37 £ 0.14
4GXL 30 81 7.41 +£1.01 2.69 £ 0.20
3RM1 31 71 6.23 + 0.88 3.21 + 0.63
2DON 32 70 9.69 + 2.48 3.56 + 0.54
2VR3 32 71 12.06 + 2.67 6.30 + 1.43
4HTP 32 85 9.02 + 0.27 4.52 +0.88
2CE8 33 70 7.19 £ 0.35 4.59 £+ 0.66
4F1Z 33 72 15.69 +2.99 2.88 £+ 0.17
27JD 33 7 2.77 £ 0.53 1.79 + 0.07
3W1B 33 85 993 £ 052 5.21 +£1.19
3v2X 34 84 10.65 + 0.96 2.56 + 0.46
3PTL 35 71 10.92 +2.82 3.99 + 0.19
1X2R 35 74 6.51 & 0.95 4.12 £+ 0.40
3KUS 35 83 7.28 £1.99 253 + 0.57
3U9Q 36 69 5.64 +1.24 3.34 +0.35
1T7R 36 77 5.21 +0.30 3.15 &+ 0.47
2QBX 36 80 4.02 +£0.80 2.47 + 0.56
INX1 36 81 5.57 + 0.65 4.01 £+ 0.47
2W2U 36 91 6.17 & 1.49 3.49 £ 0.49
1UJo 37 74 7.02 +1.10 3.89 4+ 0.40
2HT9 37 85 7.72 £ 075 5.74 £ 0.23
1EG4 37 106 8.97 +0.86 4.64 £ 0.26
2FVJ 38 81 6.83 £ 044 5.13+0.24
3LL8 38 85 3.70 £ 1.01 1.98 +£0.15
1T4F 38 86 7.52 £0.81 5.27 £0.13
1TFC 39 81 7.02 + 0.64 4.95 + 0.28
2DYP 39 81 3.70 2091 1.71 £0.12
INTV 39 89 6.20 + 0.87 3.27 & 0.69

PDB ID DoFs atoms Vina DINC
4B4N 40 110 8.82 + 0.95 5.21 +0.61
3AWR 41 84 8.25 £ 0.74 494 £+ 0.37
2PEH 41 88 7.13+1.10 4.54 4+ 0.15
2XVC 41 99 10.67 +1.56 2.53 £ 0.35
3GYT 42 81 7.14 + 0.47 5.63 = 0.30
1H6W 42 85 11.13 + 2.14 2.65 + 1.68
204) 42 87 8.18 + 0.95 4.82 4+ 0.56
4GQ6 42 99 6.98 + 1.36  4.65 & 0.28
2XRW 42 100 9.19 +1.24 6.26 + 0.67
3DS4 42 103 7.85 + 0.82 4.79 + 0.36
2PUY 43 80 8.94 +2.46 3.94 4+ 0.30
2P1T 43 86 5.86 + 1.09 4.05 + 0.74
1D4T 44 90 14.65 + 1.08 4.81 £ 0.87
2QSE 45 89 7.21 + 0.68 5.25 4+ 0.23
1RXZ 45 97 7.35+0.81 3.53 +£0.91
2BBA 45 115 7.18 +£0.82 5.08 & 0.35
INQ7 46 90 8.06 + 0.41 5.46 + 0.30
3KMR 46 90 7.02 +0.86 5.36 + 0.36
3VTC 46 91 8.59 + 0.91 5.63 +0.11
2P54 46 97 7.40 + 0.75 5.14 +0.34
2Q0S 46 97 7.64 + 0.37 5.89 + 0.33
3RQG 47 92 7.09 +0.29 5.34 +0.24
4ERY 47 100 7.19 + 0.33 3.61 4+ 0.59
2FTS 47 104 8.04 £ 042 454 +0.24
10We6 48 94 9.95 + 0.52 7.23 +0.39
3C3R 48 104 8.94 + 147 5.87 + 0.34
3LOE 49 98 7.08 +£1.09 5.22 +0.10
30LF 49 99 6.51 + 0.57 5.49 + 0.27
1T08 49 115 8.98 + 0.81 5.36 &+ 0.97
INLN 50 94 7.41 + 0.88 2.96 + 0.85
4J8S 50 102 6.63 + 0.61 4.79 4+ 0.18
2FMF 50 107 9.26 + 0.85 6.54 + 0.33
2FFF 50 109 7.98 &+ 0.52 4.72 &£ 0.77
3QIS 50 109 591 + 0.44 3.85 4+ 0.49
2PUX 50 111 927 £1.71 5.18 +0.28
2CCH 51 102 8.26 + 0.45 4.94 £+ 0.81
2WHX 51 109 8.41 + 0.69 4.98 4+ 0.72
2VWF 51 115 8.28 £ 155 5.65 4+ 0.22
2B9H 52 101 9.73 £ 2.17 4.53 £ 0.53
3UP3 53 108 8.75 + 0.83  6.28 + 0.19
3H1Z 53 136 9.89 +2.02 5.04 £+ 0.33
1PZL 55 114 7.79 + 0.62 5.62 4+ 0.31
4K0U 62 130 8.31 + 0.74 5.90 £+ 0.49
2V8Y 67 129 9.10 + 1.42 6.09 & 0.36

average 7.7 +101 4.17 £ 0.45




