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Abstract

The atom mapping of a chemical reaction is a bijection between the atoms in the reactant
molecules and the atoms in the product molecules. It encodes the underlying reaction mecha-
nism and, as such, constitutes essential information in computational studies in metabolic engi-
neering. Various techniques have been investigated for the automatic computation of the atom
mapping of a chemical reaction approaching the problem as a graph matching problem. The
graph abstraction of the chemical problem though, eliminates crucial chemical information.
There have been efforts for enhancing the graph representation by introducing the bond stabil-
ities as edge weights, as they are estimated based on experimental evidence. Here, we present a
fully automated optimization-based approach, named AMLGAM (Automated Machine Learn-
ing Guided Atom Mapping), that uses machine learning techniques for the estimation of the
bond stabilities based on the chemical environment of each bond. The optimization method
finds the reaction mechanism which favors the breakage/formation of the less stable bonds. We
evaluate our method on a manually curated dataset of 382 chemical reactions and we run our
method on a much larger and diverse dataset of 7,400 chemical reactions. We show that the
proposed method improves the accuracy over existing techniques, based on results published
by earlier studies on a common dataset, and is capable of handling unbalanced reactions.
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1 Introduction
Within an organism, thousands of chemical reactions are catalyzed as part of the metabolic pro-

cesses that take place to sustain life. A metabolic process consists of a series of chemical reactions
that either break down molecules, supplying the cells with energy and building blocks, or synthe-
size new molecules necessary for the function of the cell. A chemical molecule consists of a set of
atoms bound together with a specific arrangement. At each reaction step of a metabolic process, a
set of molecules, called reactants, is transformed into a new set of molecules, called products, by
rearranging the atoms of the reactant molecules. The transformation consists of bond breakages
and bond formations that change the arrangement and the distribution of the atoms among the re-
actant molecules. The correspondence between the atoms in the reactant molecules and the atoms
in the product molecules is given by the atom mapping (AM) of the chemical reaction.

The AM describes the underlying reaction mechanism since it encodes the changes that take
place, i.e., which bonds break or form, during the reaction. Therefore, it complements the defini-
tion of a chemical reaction along with the sets of the reactant and the product molecules. As such,
the AM is necessary for the development of computational tools that involve processing or simu-
lation of chemical reactions especially for drug design studies. In metabolic engineering for ex-
ample, the AM is used for assessing the feasibility of computationally derived metabolic pathways
towards the production of therapeutic compounds.1–3 In computer-aided synthesis, AMs are re-
quired in order to extract reaction rules from known reactions and utilize them to predict unknown
reactions. Similarly, in the assessment of drug efficacy and safety, atom mappings are required
for the prediction of drug metabolism.4 Moreover, AM information is necessary in simulations of
tracer experiments which are essential in various studies such as in metabolic flux analysis.5,6 AMs
have also been used for classifying chemical reactions based on the electron redistribution pattern
of the reaction7 and for retrieving reactions from chemical databases.8

Despite its importance, AM data are not available for many known chemical reactions. Most
chemical databases do not provide AM data and those that do, may not provide AMs for their
entire content. Determining the AM for a chemical reaction requires expert knowledge and ex-
pert annotation of chemical reactions in databases, which consist of thousands of entries, is not a
feasible task. There is an increasing effort to fill this gap by developing computational tools for
automatically determining the AM of a chemical reaction.

The AM problem, i.e., the automatic derivation of the AM of a chemical reaction using com-
putational methods, has been formulated borrowing concepts from graph theory.9 A chemical
molecule can be represented as a graph in which the vertices correspond to atoms and the edges
correspond to the bonds formed between the atoms. Within this context, the AM of the reaction
is a graph matching between the graphs that correspond to the reactant and product molecules.
The AM problem is equivalent to finding the bonds that create isomorphic subgraphs between
the reactants and the products or otherwise the broken and formed bonds of the reaction.10 The
computational approaches to the AM problem can be divided into two major categories: the ap-
proaches that search for subgraph isomorphisms between the reactant and the product graph and
the optimization-based approaches that minimize the number of reacting bonds.

The graph abstraction of the AM problem provides a formal formulation of the problem but
at the same time imposes limitations. The graph representation captures the connectivity be-
tween the atoms but it does not encode the chemical properties of the molecules. Subgraph
isomorphism-based techniques identify the common substructures between the reactant and the
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product molecules but in some cases this information is not enough to determine the AM.1 Optimization-
based techniques, on the other side, rely on the assumption that a reaction proceeds with the mini-
mum number of reacting bonds, an assumption that does not hold for all chemical reactions. There
have been attempts to enhance the graph representation of the molecules by introducing edge
weights that reflect the bond stabilities.11,12 In these approaches, the bond stabilities have been
determined by experts, based on experimental evidence, and have been found to be inadequate to
capture the variability imposed by the chemical environment of the bond.

An additional challenge in the AM problem is the case of unbalanced reactions. Unbalanced
reactions are reactions in which a bijective mapping between the atoms of the two sides of the
reaction, with respect to the atom species, is not possible due to missing atoms. While no reaction
can be unbalanced in nature, such cases correspond to incomplete entries in chemical databases.
Imbalances in the number of atoms between the reactant and the product molecules may be the
result of wrong stoichiometry in the reaction equation, non-recorded molecules or even molecules
with a wrong chemical formula. Such cases are quite prevalent in reaction databases with the
two most popular databases, KEGG13 and Metacyc,14 containing around 10% and 5% unbalanced
reactions,15 respectively. According to another source though, reactions with a small number of
missing atoms can constitute up to 40-50% of the content of reaction databases.7 Therefore, an
AM algorithm ideally should be capable of dealing with such cases and especially with reactions
with a small number of missing atoms.

In this paper, we present an optimization-based AM algorithm that takes into account the sta-
bility of each bond. The contributions of this work are the following:

1. We provide a machine learning (ML) framework for estimating the bond stabilities based
on local topological and atomic features regarding the bond itself as well as the connected
atoms. To our knowledge, this is the first method that uses machine learning for incorporat-
ing chemical knowledge in the graph formulation of the AM problem.

2. The presented algorithm supports the computation of AMs for unbalanced chemical reac-
tions and indicates equivalent mappings due to indistinguishable atoms.

3. We evaluate our method on a manually curated dataset of 382 balanced chemical reactions
and compare it against existing AM tools based on results published by earlier studies. Fur-
thermore, we run our method on a much larger and diverse dataset of 7,400 chemical reac-
tions including unbalanced reactions.

More specifically, we adopt an optimization-based approach for the AM problem that mini-
mizes the weighted graph edit distance between the reactants and the products. The edge weights
correspond to bond stabilities and are estimated using ML techniques based on local features re-
garding the bond itself and the surrounding atoms. The obtained mapping corresponds to the reac-
tion mechanism which favors the breakage of the less stable bonds. The optimization problem is
formulated as a mixed integer linear programming (MILP) problem.12,16 We handle unbalanced re-
actions by relaxing the constraints of the MILP problem. Finally, we indicate equivalent mappings
due to indistinguishable mappings and provide alternative mappings if multiple optimal solutions
exist.
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2 Related Work
The current approaches to the AM problem can be divided into two major categories: 1) common

substructure-based approaches and, 2) optimization-based approaches. A thorough review of the
two approaches has been presented by Chen et al. in 2013.17

In the first category, the AM is determined by identifying the structures that are preserved
through the reaction. The preserved structures are identified by detecting isomorphic subgraphs
between the reactant and the product molecules. Most approaches rely on an iterative application
of a maximum common subgraph (MCS) algorithm between the reactants and the products. MCS
algorithms, although are characterized by high complexity, have been studied extensively for the
comparison of chemical compounds, and multiple variations have been developed.18 The first MCS
based approach to the AM problem was presented by Arita in 2003.1 Arita’s study is of particular
interest because he reported the cases where his method failed to identify the correct mapping and
some of those errors are inherent limitations of the MCS approach.1 The most recent MCS based
approaches are the reaction decoder tool (RDT) by Rahman et al. (2016)19 and the canonical
labeling for clique approximation (CLCA) algorithm by Kumar and Maranas (2014).20 The RDT
tool is an ensemble method based on 4 different MCS based algorithms which can also handle
unbalanced chemical reactions. The CLCA algorithm is a more efficient MCS approach based on
canonical naming and local search algorithms which can also handle unbalanced reactions. As a
side note, the CLCA algorithm was compared against optimization-based tools in a very thorough
study, demonstrating the weaknesses of each approach.20 A common substructure based approach
that does not rely on the use of an MCS algorithm was published by Akutsu in 200410 in an effort to
overcome the inherent limitations of the MCS based methods reported by Arita. Although Akutsu’s
method was specifically designed for a certain reaction category, named exchange reactions, his
work offered important insights in the complexity of the AM problem.

Optimization-based approaches rely on the principle of the minimum chemical distance accord-
ing to which a chemical reaction proceeds with the minimum structural change, which corresponds
to a transformation with the minimum number of broken and formed bonds.21 The mapping that
corresponds to the minimum number of bond changes is determined by minimizing the edit dis-
tance between the reactant and the product graph. The edit distance corresponds to the bonds that
change during the reaction. A minimum edit distance (MED) approach to the AM problem was
presented by First et al. in 2011,16 where the optimization problem was formulated as a mixed
integer linear programming (MILP) problem. The MILP formulation allowed a more thorough
representation of the chemical problem through the constraints and the objective function compar-
ing to the common substructure based approaches. In particular, bond order changes, changes in
hydrogen atoms and stereochemistry are also taken into account along with the bond formations
and breakages. However, the capabilities of this approach are limited by the assumption that an
optimal solution minimizes the number of changed bonds which does not hold for all reactions. In
an effort to alleviate that assumption, Latendresse et al., in 2012, presented a modified version of
First’s MILP approach which takes into account the bond stability in the optimization function.12

In that framework, the mapping is determined by maximizing the stability of the preserved bonds
which implicitly minimizes the weighted edit distance (MWED). In that work, the values of the
bond stabilities have been determined manually by chemists based on experimental evidence and
depend on the species of the connected atoms and the bond order. However, the authors identified
cases where the proposed stability values do not lead to the correct mapping and for those cases
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they adjusted the values. The authors compared the proposed MWED approach against First’s
MED approach and according to the reported results, the introduction of the bond stabilities gives
an advantage over the simple MED method. The importance of introducing the bond stabilities
in the optimization problem had been indicated earlier, in 2008, by Körner and Apostolakis.11,22

They not only took into account the bond stabilities for determining the atom mappings but also
elaborated the theoretical underpinnings of this approach. In particular, the weighted edit distance
is regarded as an approximation of the transition state energy of the reaction, and therefore, its
minimization leads to the reaction mechanism with the minimum activation energy.11 An impor-
tant distinction is that although in this approach the AM problem is formulated as an optimization
problem, it is approached using common substructure techniques.

Methodologies that combine characteristics of both approaches, optimization and common sub-
structure, have also been investigated. In these methods, the AM is determined in two stages: first
the preserved structures are identified using an MCS algorithm and next the atoms in the unmatched
structures are mapped using either heuristics or following an optimization based strategy that mini-
mizes the reacting bonds. The Automapper tool from ChemAxon, the ICMAP tool from InfoChem
(2013)7 as well as Fooshe’s ReactionMap (2013),23 all fall under this category.

At this point, it should be noted that the lack of standard benchmark datasets has hampered
the evaluation of the existing approaches. Many approaches do not assess the accuracy of the
computed mappings and among those that do, the chosen datasets differ a lot in terms of reaction
complexity as well as dataset size, hindering a comparative evaluation. On top of that, the validity
of the reference mappings is always in question, especially in the case of mappings that have been
derived computationally. An effort to create a manually curated dataset of chemical reactions for
the comparative evaluation of the existing AM approaches was recently made by a research group
in the Luxembourg Centre for Systems Biomedicine.24 In this work, the authors created a dataset
of 512 manually curated chemical reactions which was used to compare 6 existing approaches.

Regarding unbalanced reactions, many computational methods are not designed to handle such
cases, including the MILP based approaches presented by First and Latendresse.12,16 Among the
methods that can be applied on unbalanced reactions, they deal with such cases by either re-
balancing the reaction prior to the mapping computation or by allowing unmapped atoms.7,11,20

An unbalanced reaction is re-balanced by adding molecules in the reaction equation that balance
out the number of atoms between the two sides of the reaction for each species. In the simple
case of missing oxygen atoms, water molecules can be added. If larger parts of the reaction are
missing though, the problem of re-balancing the reaction equation becomes more complicated. In
addition to that, optimization methods that re-balance the reaction equation rely on the additional
assumption that the added structures do not undergo any structural change or otherwise they do not
contribute in the cost function.11

In this paper, we present an optimization-based approach to the AM problem which takes into
account the stability of each bond. We define the bond stability probabilistically and rely on ML
techniques for its estimation taking into account features describing the bond locally within the
molecule. We follow the MILP formulation of the optimization problem12,16 which we modify in
order to handle unbalanced chemical reactions without re-balancing the reaction equation.

The use of ML in the area of cheminformatics has been established as a tool to discover quan-
titative structure-activity relationships in chemical molecules, known as QSAR analysis. ML algo-
rithms are used in order to model the relationship between molecular structures and certain prop-
erties such as toxicity and solubility.25 In these methods, the chemical molecules are described
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as either binary vectors, called molecular fingerprints, that indicate the presence of certain sub-
structures, or as a set of physiochemical descriptors that quantify certain properties (topological,
geometrical, thermodynamic, electronic, constitutional) of the molecule.26 In most cases, the de-
scriptors regard the molecule in its entirety; however, more localized descriptors at a bond or atom
level have also been used, such as, in the prediction of drug metabolism through the identification
of possible sites of metabolism4 and in the automatic assignment of EC numbers in metabolic
reactions.27 In the same framework, here we present a method that aims to correlate bond descrip-
tors with the stability of the bond using ML. In our study, the descriptors contain topological and
atomic information regarding the bond and the surrounding atoms. Although to our knowledge this
is the first approach that uses ML to aid the computation of AMs in chemical reactions, it is worth
mentioning that Muller et al., presented an ML-based method for the automatic identification of
erroneous mappings that are computationally derived.28

3 Problem Definition
A chemical reaction is denoted as:

r1 + . . .+ rm −→ p1 + . . .+ pn

where ri, i = 1, . . . ,m are the reactant molecules and pi, i = 1, . . . ,n are the product molecules.
Each reactant molecule ri is represented as a graph with Ari being the vertex set corresponding

to the set of atoms of the molecule ri and Bri being the edge set corresponding to the set of bonds
that are formed between the atoms in Ari . Accordingly, each product molecule pi is represented as a
graph with Api , Bpi being the vertex and the edge set of the graph. The graph representation can be
extended to a chemical reaction as follows: A chemical reaction is represented by a pair of graphs
R, P, with R = (Ar,Br) being the union of the graphs that correspond to the reactant molecules ri,
and P = (Ap,Bp) being the union of the graphs of the product molecules pi. Sets Ar and Ap contain
all atoms appearing in the reaction equation except hydrogen atoms. Hydrogen atoms are highly
reactive atoms and their position can change very rapidly. As such, the atom mappings of hydrogen
atoms do not give important insights on the reaction mechanism and are therefore not computed.
Figure 1 shows an example of a graph representation of a chemical reaction, with the reactant
graph consisting of a single component and the product graph consisting of two components.

(a) Chemical reaction (b) Graph representation

Figure 1: A chemical reaction and the corresponding graph representation

The atom mapping of a chemical reaction r1 + . . .+ rm←→ p1 + . . .+ pn, with reactant graph
R = (AR,BR) and product graph P = (AP,BP), is a mapping f : AR −→ AP, which satisfies the
following properties:
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(i) The mapping preserves the atom species: if f (i) = j then s(i) = s( j) where s(i) denotes the
species of atom i.

(ii) The mapping f is bijective: for each atom i ∈ Ar there is an atom j ∈ Ap such that f (i) = j
and for each atom j ∈ Ap there is an atom i ∈ Ar such that f−1( j) = i. Although the atom
mapping of a chemical reaction is bijective in nature, from a computational perspective there
are two cases where the bijective property is violated: unbalanced reactions and reactions
that involve molecules with equivalent atoms.

• In unbalanced reactions, some atoms do not appear in both sides of the reaction and
therefore a bijection from Ar to Ap is not possible. Still, a mapping exists which is
defined in a subset of the total atoms: f : AB

R ⊆ AR −→ AB
P ⊆ AP where AB

R = AB
P is the

set of atoms that appear in both sides of the reaction.

• Equivalent atoms correspond to different atom entities that are chemically indistin-
guishable. If two atoms are equivalent then they should be mapped to the same atom
(or atoms) and therefore the mapping function is no longer bijective. More specifically,
if i ∈ AR and j ∈ AP and f is an AM function, then:

if i and i∗ are equivalent and f (i) = j then f (i∗) = j (1)

if j and j∗ are equivalent and f−1( j) = i then f−1( j∗) = i (2)

Equivalences between atoms occur in the following cases:

(a) Multiple copies of the same molecule in the same side of the reaction. In that case,
the corresponding atoms (atoms with the same position within each molecule) are
equivalent. If for example, there are two water molecules in the reactants side then
the two oxygen atoms are equivalent.

(b) Molecules with symmetries. In this case, the equivalent atoms belong to the same
molecule and the molecule has planes of symmetry. Computationally, we deter-
mine such equivalences by comparing the BFS (Breadth First Search) traversal of
the chemical graph starting from each atom, taking into account visited atoms and
bonds, with the bond defined by its bond order and stereochemistry. The two oxy-
gen atoms in carbon dioxide as well as the highlighted carbon atoms in acetone of
Figure 2 are equivalent atoms that fall under this case.

(c) Equivalences due to resonance. In this case, the equivalent atoms belong in the
same molecule, they have the same species, they are connected to the same atom,
which can be either C, P, N or S, and they are not connected with any other atom.
It should be noted that, in this case, the two bonds that attach the two atoms to
the same atom do not have the same order (if the bond order is the same then the
atoms are still equivalent according to criterion (b)) however, the shared electrons
for each bond are de-localized due to resonance and therefore the two atoms cannot
be distinguished. The two highlighted oxygen atoms in acetoacetate of Figure 2
are equivalent according to this criterion.

(iii) The mapping represents the reaction mechanism i.e., which bonds change during the re-
action. In this approach, we assume that a chemical reaction proceeds with the minimum
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activation energy and therefore the computed mapping should induce the breakage and for-
mation of the bonds with the lowest stability.

Figure 2: Equivalent atoms due to the resonance phenomenon in acetoacetate and due to symme-
tries in carbon dioxide and acetone

4 Methodology
We present an automated, machine learning guided, atom mapping method (AMLGAM). The

AMLGAM method determines the AM by minimizing the weighted edit distance (MWED) be-
tween the reactant and the product graph, with the edge weights representing the bond stabilities.
The optimization problem is defined as a mixed integer linear programming problem.12,16 The sta-
bility of a bond is an indication of the difficulty for breaking that bond during the reaction and we
use probabilistic techniques for estimating it. The computed AM corresponds to the reaction mech-
anism that favors the breakage or formation of the less stable bonds. This way we seek to identify
the reaction mechanism that requires the minimum amount of energy for the reaction to proceed, or
otherwise the minimum activation energy based on a crude approximation of the activation energy
that relies on bond stabilities.11

4.1 Assumptions
The presented framework relies on the assumption that each chemical reaction proceeds with

the minimum activation energy.11 More specifically, the assumptions of the AMLGAM method
are:

1. A chemical reaction proceeds with the minimum activation energy.

2. The energy that a bond requires to break or form is proportional to the stability of the bond.

3. The total amount of energy that a reaction requires to proceed is approximated as the sum of
the energies of the bonds that completely break or form.

4. The chemical reaction is a single step transformation.

5. The complete breakage of a double or triple bond consists of two concurrent events: a bond
order change (reduction) and a bond breakage. Here, for simplicity we assume that the two
events are independent.
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Based on these assumptions, we minimize the sum of the stabilities of the reacting bonds, as
they are approximated by the ML model, in an effort to find the AM that corresponds to the min-
imum activation energy. The assumptions 1 – 4 are in agreement with the theoretical background
that Körner and Apostolakis’ approach relies on,11 while the last assumption is introduced for fa-
cilitating the calculation of the stabilities with probabilistic methods as further discussed in section
4.3. In the case of unbalanced reactions, the presented method relies on the additional assumption
that atoms are missing only from one side of the reaction equation. This additional assumption
does not restrain the application of the method in cases where there are missing atoms in both
sides of the reaction but lowers the confidence on the computed mapping.

4.2 Formulation of the optimization problem
We formulate the optimization problem of minimizing the activation energy as a MILP prob-

lem.12,16 A MILP problem is described as:

min CT X s.t. AX ≤ B (3)

where X is a set of variables, AX ≤B is a set of linear constraints and CT X is the objective function.
A solution of a MILP problem is an assignment to the variables X which optimizes the objective
function and satisfies the constraints. In the MILP formulation of the AM problem, the variables
correspond to possible mappings between the atoms and the bonds of the two sides of the reac-
tion, the objective function minimizes the weighted edit distance while the constraints impose the
bijective property to the mapping and ensure consistency between the atom and the bond mappings.

More specifically, two types of variables are defined: the atom mapping variables and the bond
mapping variables. An atom mapping variable ai j is defined for every pair of atoms i, j with i ∈ Ar
and j ∈ Ap which have the same species s(i) = s( j). A bond mapping variable βi jkl is defined
for every pair of bonds (i, j), (k, l), with (i, j) ∈ Br, (k, l) ∈ Bp and s(i) = s(k) and s( j) = s(l). It
should be noted here that the bonds are considered directed and therefore the mapping βi jkl is not
the same as the mapping βi jlk. In the case of symmetric bonds, i.e., bonds that connect atoms of
the same species, both mappings βi jkl and βi jlk are possible while in the case of bonds that connect
atoms of different species, only one mapping is defined. The atom mapping variables are defined
as binary and indicate possible mappings between the atoms in reactants and the atoms in products.
Accordingly, the bond mapping variables are also binary variables indicating possible mappings
between the bonds in the two sides of the reaction. Here, we recall that the hydrogen atoms are not
mapped and therefore we do not define atom mapping variables between hydrogen atoms.

The constraints on the atom mapping variables are defined in order to ensure the bijective
nature of the mapping: each atom in the reactants should be mapped to one atom in the products
and each atom in the products should be mapped to one atom in the reactants. Since the atom
mapping variables are declared as binary variables, taking values 0 or 1, these constraints can be
expressed as:

∀i ∈ Ar ∑
j∈Ap,s(i)=s( j)

ai j = 1 (4a)

∀ j ∈ Ap ∑
i∈Ar,s(i)=s( j)

ai j = 1 (5a)
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In the case of unbalanced reactions the bijective property of the mapping is violated. In par-
ticular, a one-to-one mapping is not possible for all atom species but may be possible for certain
species. We apply constraints 4a and 5a for the atom species that are balanced, i.e., there is an equal
number of occurrences of that species in both sides of the reaction. We relax those constraints for
the atom species that are not balanced in order to allow some atoms to remain unmapped:

∀i ∈ A∗r 0≤ ∑
j∈Ap,s(i)=s( j)

ai j ≤ 1 (4b)

∀ j ∈ A∗p 0≤ ∑
i∈Ar,s(i)=s( j)

ai j ≤ 1 (5b)

where A∗r and A∗p are the sets of atoms of the non-balanced species in the reactants and products
side, respectively. If, for example, only oxygen atoms are not balanced then the constraints 4b and
5b are applied only for the oxygens while the constraints 4a and 5a are applied for all other atoms.

In order to ensure that a maximal mapping is found and constraints 4b and 5b do not let ad-
ditional atoms be unmapped, the following constraint is also introduced in the case of unbalanced
reactions:

∑
i∈Ar, j∈Ap

ai j = min(|Ar|, |Ap|) (6)

This constraint requires the number of mapped atoms to be equal to the minimum number of
atoms between the two sides of the reaction assuming that atoms are missing only in one side of
the reaction.

The constraints on the bond mapping variables are defined in order to ensure consistency be-
tween the bond mappings and the atom mappings. If a bond (i, j) ∈ Br is mapped to a bond
(k, l) ∈ Bp then the atom i should be mapped to k and the atom j should be mapped to l (we recall
here that the bonds are considered directed). This constraint is formulated as:

∀βi jkl (βi jkl ≤ aik∧βi jkl ≤ a jl) (7)

The objective function minimizes the weighted edit distance between the reactant and the prod-
uct graph. In particular, it penalizes the broken and formed bonds with a cost equal to the stability
of each bond. The objective function favors the breakage/formation of the most unstable bonds:

min ∑
(i, j)∈Br

Si j(1− ∑
(k,l)∈Bp

βi jkl)+ ∑
(k,l)∈Bp

Skl(1− ∑
(i, j)∈Br

βi jkl) (8)

The first term of the objective function penalizes the bonds that completely break, while the
second term penalizes the bonds that are formed. The cost of a broken or a formed bond (i, j)
is equal to the stability Si j of the bond. The estimation of the bond stability Si j for a bond (i, j)
is described in the following section. Here we recall that the variables βi jkl are binary variables
that indicate a possible mapping between the bond (i, j) ∈ Br and the bond (k, l) ∈ Bp. If a bond
(i, j) ∈ Br breaks, this means that it is not mapped to any bond in Bp and therefore βi jkl = 0,
∀(k, l) ∈ Bp and consequently 1− ∑

(k,l)∈Bp

βi jkl = 1. Similarly, for a formed bond (k, l) ∈ Bp, there

is no mapped bond in reactants and therefore βi jkl = 0, ∀(i, j) ∈ Br.

10



It should be noted, that the objective function in (8) includes only the bonds that completely
break or form while bond order changes are not explicitly taken into account. However, a change in
the bond order normally induces a bond breakage or formation and therefore bond order changes
are implicitly taken into account through penalizing the induced bond formations or breakages.
Changes in the bond stereochemistry are also not included in the objective function due to the
uncertainty of the event. A change in the bond stereochemistry may mean that either the bond
simply changed stereochemistry or the bond broke and reformed with a different stereochemistry.

4.3 Estimation of bond stabilities using machine learning
We estimate the stability of a bond following a probabilistic approach. More specifically, we

define the stability Si j of a bond (i, j) as the probability of the bond being preserved after the
reaction or otherwise the probability of not breaking the bond (i, j).

Si j = 1−Pri j(break) (9)

After a chemical reaction, a bond formed between two atoms in reactants, will either remain in-
tact, preserving its bond order and stereochemistry, or it will react. A reacting bond either changes
bond order, or changes stereochemistry or completely breaks. Here, we assume that the complete
breakage of a double or triple bond implies two concurrent events: a reduction in the bond order
and a breakage of a first order bond. We calculate the probability that a first order bond will break
as Pr(break) = Pr(react) ·Pr(break|react). For a second order bond, that probability is obtained
as Pr(break) = Pr(react) ·Pr(BO|react) ·Pr(break|react) where BO represents the event bond or-
der change. Generalizing the equations above, the stability of a bond (i, j) with bond order oi j is
obtained as:

Si j = 1−Pr(react) ·Pr(BO|react)oi j−1 ·Pr(break|react) (10)

assuming that the events bond order change and bond breakage are independent.

Bond RF1

Reacting Bond

Pr(react)

Not Reacting Bond

RF2a

RF2b

Preserved Bond Order

Broken Bond

Pr(break|react)

Preserved Bond

Change in Bond Order

Pr(BO|react)

Figure 3: Hierarchical classification model for predicting the fate of a bond after a reaction occurs
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The calculation of the probabilities that appear in equation (10), for determining the stability
of a bond, is not trivial. The propensity of a bond to break depends on various factors on multiple
levels that need to be considered: at a bond level (e.g., the species of the connected atoms, the
topology of the bond and the neighboring atoms) at a molecular level (e.g., the presence of func-
tional groups at more distant sites within the molecule) and at a reaction level (e.g., the reaction
conditions and the enzyme that catalyzes the reaction). Here, we follow an ML approach for esti-
mating those probabilities based on bond-level features and information regarding the surrounding
atoms. More specifically, in order to capture the semantics discussed above, a hierarchical classifi-
cation model is built as shown in Figure 3. In this representation, the circles correspond to binary
classifiers while the rectangles correspond to the possible outcomes. The classifiers have been
implemented as random forests (RF).29 The first classifier (RF1) is used in order to determine the
reactivity of the bond, i.e., the probability that the bond reacts. At a second level and given that the
bond reacts, two additional classifiers (RF2a and RF2b) are used in order to assess the likelihood of
completely breaking the bond and the likelihood of changing bond order, respectively.

The RFs are trained on a set of labeled chemical bonds. We have constructed the set of labeled
bonds, based on a set of atom mapped chemical reactions, as follows: each mapped reaction is
decomposed into all bonds (i, j) ∈ Br ∪Bp. Each bond is labeled as: (1) unchanged, (2) altered,
i.e., there is a change in the bond order, (3) completely broken/formed. The RF1 is trained to
distinguish the reacting from the non-reacting bonds. All bonds that remain intact through the
reaction are labeled as negative examples (label 1), while the bonds that undergo any change (labels
2 and 3) are labeled as positive. In the next level, two more RFs are trained for predicting 1) the
probability for a single bond to break (RF2a), and 2) the probability for a bond to change bond
order (RF2b). The RF2a is trained only on first order bonds because here we model the complete
breakage of a double or triple bond as a reduction in the bond order and a simultaneous breakage
of the first order bond. The RF2b is trained on all reacting bonds. The double and triple bonds
that completely break/form (label 3) are considered positive examples for both RFs. It should be
pointed out that since stereochemistry changes are not included in the objective function, there is
no RF intended for predicting the probability that a bond changes stereochemistry.

For the construction of the training set, each bond of each chemical reaction creates a new
entry. This means that it is possible to have multiple entries with identical feature vectors in the
training set even under different labels. In theory, training a model with contradicting entries
should be avoided. However, here we are interested in capturing the tendency of a bond to react
rather than predicting the actual label. Therefore, the whole dataset is potentially more informative
than removing either repeating or contradicting entries.

As a side note, the hierarchical architecture of the classification model was chosen in order to
mitigate the high imbalance in the dataset used to train the RF classifiers which can negatively
affect their performance. In particular, we observed that more than 90% of the entries in the bond
dataset correspond to bonds that remain intact through the reaction since the big majority of bonds
in a reaction do not react. This means that RF1 will bias toward non-reacting bonds resulting
in a classifier with very low sensitivity. The first level of the hierarchical model addresses this
issue by filtering out unchanged bonds and creating less unbalanced training sets for the second
layer classifiers. A more detailed evaluation of the random forest classifiers is provided in the
supplementary material A (section S2). Regarding the classification algorithm for the estimation
of the probabilities in equation (10), its basic core is a tree-structure classifier, named decision
tree.30 Decision trees is a method of inductive inference based on a set of training examples. It is a
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well-suited method for the task of predicting the reactivity of a bond because they create inductive
rules that are interpretable by an expert, are invariant to uninformative features and can be applied
in data that are represented by both categorical and numerical values without preprocessing. A
random forest algorithm is an ensemble method that combines multiple uncorrelated decision tree
classifiers, resulting in a more powerful classifier that is less prone to over-fitting.29 The probability
for an event to happen is calculated as the proportion of votes from the ensemble of trees for that
event. For example the probability that a bond will react is the proportion of the trees that predict
that this bond will react over the total number of trees.

Bond representation For the calculation of the bond stabilities, each bond is represented as a
vector which concatenates features that describe the bond locally, regarding the bond itself as well
as the neighboring atoms. More specifically, the bond related features are the bond distance (com-
puted based on the coordinates of the atoms as given in the mol or rxn files), bond order and bond
stereochemistry. The topology of the bond, that is whether the bond is part of a ring or not, is
also recorded. The features that describe each one of the bounded atoms are the atom species,
the number of valence electrons, the atomic number, the charge and the number of atoms of each
species attached to the bounded atoms. The presence of certain neighboring atoms or the forma-
tion of functional groups can also affect the reactivity of a bond. For that reason, the following
information is also used in the representation of the bond: i) Whether a bond is part of a functional
group. The functional groups that are considered here are: carboxyl group, ketone, aldehyde, es-
ter, amide, phosphate and sulphate. ii) Whether the bond falls under one of the following cases:
x−C = O, x−C−O, x−CH−O where x is either a C, or N or S atom and x−C is the bond under
consideration.

The complete list of features that have been used for the representation of the chemical bonds
is presented in the supplementary material A (section S1).

It is worth mentioning that since the bond descriptors are local features, the computed prob-
abilities approximate the stability of each bond with respect to the molecule it belongs to, rather
than the entire reaction system. With this method, we aim to capture the tendency of a bond to
react rather than obtaining a precise prediction by accounting for all possible factors. Although
the latter may seem desirable, a more fine representation 1) imposes the risk of overfitting and 2)
may require additional input from the user (such as the enzyme number or the reaction conditions)
which limits the usability of the method. Indeed, our results showed that even that crude approxi-
mation of the actual bond stability can be adequate to guide the search in the optimization problem
most likely because the search space is limited by the known structure of the product molecules.

4.4 Alternative Mappings
Although the AM of a chemical reaction is unique, our method outputs multiple mappings in

the following two cases: i) the optimization problem results in multiple optimal solutions, and
ii) equivalent atoms appear in the reaction. In the first case, the alternative mappings correspond to
multiple possible reaction mechanisms. In the case of equivalent atoms, usually the reaction mech-
anism is unique but there are atoms that cannot be distinguished and therefore multiple mappings
are possible. Alternative mappings due to equivalent atoms are computed in a post-processing step
and are indicated with the same atom mapping index: Once the optimal mapping (or mappings)
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has been computed by the optimizer then for each atom we find all equivalent atoms (as described
in section 3) and then we update the computed atom mapping function f according to equations
(1) and (2).

(a) Input reaction
(b) Calculation of bond stabilities

(c) Weighted graph (d) Minimum weighted edit distance

(e) Equivalent atoms (f) Output Mapping

Figure 4: Steps involved in the AMLGAM method: (a) The input reaction. (b) Each bond of the
reaction is represented as a feature vector for the calculation of the bond stability. (c) The chemical
reaction is represented as a pair of weighted graphs with the edge weights being the estimated
bond stabilities. (d) The algorithm finds the mapping that corresponds to the minimum weighted
edit distance. (e) Equivalences between atoms are determined. (f) The output mapping shows all
alternative mappings.

The whole process for computing the AM of a chemical reaction in the AMLGAM method is
summarized in Figure 4. The input to the system is the chemical reaction (as an rxn file). Each
bond of the given reaction is represented as a vector of local features which is used to determine its
stability using the hierarchical classification model. The input chemical reaction is represented as a
pair of weighted graphs, the reactant and the product graph, in which the edge weights correspond
to the bond stabilities. The AM is determined by minimizing the weighted edit distance between
the reactant and the product graph. At a post processing step, equivalences between atoms are
determined and the AM is updated accordingly. The method outputs all optimal mappings with the
equivalent atoms indicated on each mapping.
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5 Method Evaluation

5.1 Experimental Setup
The values of the hyperparameters of the random forests were chosen as follows: The depth of

the trees and the number of trees in each forest were tuned based on a validation set from KEGG
database. More specifically, we have constructed a dataset of annotated bonds, as described in
section 4.3, from a dataset of 6,300 atom mapped reactions obtained by combining RPAIRS from
KEGG release 73.1. The selection of the hyperparameters is based on the performance of the RFs
on the classification task, i.e., predicting whether a bond reacts, completely breaks or changes bond
order. This procedure resulted in a range of optimal values and the final selection of the parameter
values was done empirically. In particular, we further increased the number of trees in the forests
to ensure convergence of the computed probabilities while we avoided large values for the depth
of the trees to prevent over-fitting. As a result, the maximum depth of the trees was tuned to 20
while the number of trees was tuned to 100 for all three RFs. The rest of the parameters were set
empirically, as follows: The nodes are split using the ‘Gini criterion’ and the maximum number
of features considered for finding the best split is set equal to the square root of the number of
features. The RFs have been implemented using Python’s scikit-learn library. For solving the
MILP problem we have used the SCIP solver31 version 4.0. We have set the time limit for the
SCIP solver to 1 hour.

5.2 Data
We evaluate our method performing 10-fold cross validation on a manually curated dataset of

382 balanced chemical reactions. This dataset has been derived from a manually curated dataset
of 512 metabolic reactions which was constructed for the purpose of comparing six existing AM
algorithms in a recent comparative study by Gonzalez et al.24 This dataset is part of the Recon 3D
database32 and is comprised of 340 reactions from BioPath database33 and 172 additional reactions
that have been added by the curators in an effort to obtain a dataset that represents all 6 EC classes.
From the initial set of 512 reactions, we have removed all duplicate entries in order to ensure that
the method is evaluated on reactions it has not seen during training. We have also compared our
method against the AM tools that have been compared in Gonzalez et al. study24 based on the
results that they have reported.

We additionally run our method on a much larger and diverse dataset from MetaCyc14 21.1
database. In particular, this dataset is comprised of 7,380 balanced chemical reactions and 22 un-
balanced. We have evaluated our method on the set of balanced chemical reactions by performing
10-fold cross validation. For the unbalanced reactions, we train the RFs using the whole set of
7,380 balanced reactions and we test our method on the set of 22 unbalanced reactions. Although
the MetaCyc database provides AMs for more than 13,000 balanced chemical reactions, we have
excluded reactions that involve molecules with missing structure (no available mol files), reactions
with R-groups, and reactions with more than 200 atoms involved, leaving a dataset of 7,402 re-
actions. The last case (reactions with more than 200 atoms) corresponds to reactions that include
molecules with cofactors and the computational complexity of the AM problem for reactions of
that size is prohibitively large and out of the scope of this work. The AMs in MetaCyc are compu-
tationally derived based on the MWED approach by Latendresse et al.12 For the case of unbalanced
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reactions, MetaCyc does not provide AMs. Also, in contrast to the Recon 3D dataset which has
been manually curated, MetaCyc provides multiple alternative mappings for the reactions where
the computational method returns multiple optimal solutions. Finally, the AMs in MetaCyc do not
indicate equivalent atoms while the manually curated dataset from Recon 3D does. Table 1 sum-
marizes information for the two datasets regarding the total number of reactions, the distribution
of reactions in the six EC classes, the number of unbalanced reactions as well as the number of
distinct reactant molecules.

Table 1: Statistics on the two datasets

Database Reactions Unbalanced EC1 EC2 EC3 EC4 EC5 EC6 Reactants
Recon 3D 382 0 124 86 57 51 21 21 314
MetaCyc 7402 22 2515 2232 1157 881 358 237 5118

5.3 Evaluation criteria
The comparison between the computed mapping and the reference mapping is performed by

comparing the corresponding sets of broken and formed bonds.12 If the two bond sets are equal
then the two mappings are considered equivalent. A chemical reaction is considered to be cor-
rectly mapped, with respect to a reference mapping, if the computed mapping is equivalent with
the reference mapping. In the case of multiple computed mappings, we consider the reaction to be
correctly mapped if at least one of the computed mappings is equivalent with the reference map-
ping. The equality between the bond sets is determined by taking into account equivalent atoms:
two bonds are considered equivalent if they connect the same pair of atoms or if they connect pairs
of equivalent atoms. For the Recon 3D dataset we consider equivalences between atoms as they are
indicated by the curators. For the MetaCyc dataset we derive such equivalences computationally,
as it is described in section 3, since the annotated mappings do not indicate such equivalences.
For the MetaCyc dataset, which provides multiple mappings for certain reactions, we evaluate our
method on whether there is an overlap between the computed mappings and the mappings provided
by MetaCyc. For the unbalanced reactions, since MetaCyc does not provide AMs, we assess the
ability of our method to handle such cases by manually inspecting the computed mappings.

5.4 Results and Discussion
In the following, we present the evaluation of our method on the two datasets from Recon 3D

and MetaCyc as well as the comparison of the presented method against the tools that have been
compared in Gonzalez’s study.24 Due to the stochastic nature of the RF classifiers, we present the
average over 10 runs for all the metrics on the Recon 3D dataset while for the much larger MetaCyc
dataset we present the results from a single run. We also briefly discuss our findings from a series
of additional experiments performed in order to investigate various classification algorithms for
the prediction of bond stabilities as well as additional features for the bond representation.
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5.4.1 Recon 3D dataset

According to the results on the 382 distinct reactions from the Recon 3D dataset, the AMLGAM
method, presented here, correctly mapped all atoms, on average, in about 359 reactions with an
accuracy of 94%. The average time for the MILP solver to find a solution is about 29 seconds.
From the set of 382 reactions, 2.6 reactions on average, exceeded the 1 hour time limit. The results
on the Recon 3D dataset are summarized in Table 2.

Table 2: Results on the Recon 3D dataset

Number of reactions 382
Correctly mapped reactions 359.3 ± 0.82

Number of timed out reactions 2.6 ± 1.35
Overall accuracy (%) 94.06 ± 0.27

Average time (sec) 28.82 ± 6.54

We additionally analyzed the distribution of the enzymatic reactions over the six EC classes
(categorization based on the enzyme that catalyzes the reaction) along with the performance of the
AMLGAM method on each class, as shown in Figure 5. The plot shows the number of reactions
and the percentage of wrong reactions for each EC class. The highest accuracy occurs for the
reactions catalyzed by oxidoreductases and transferases which are the most represented classes in
the dataset. The number of training instances from each class can affect the performance of the RF
classifiers and cause underfitting if not sufficient training data are available. However, this result
may be due to inherent characteristics of each EC class since it appears that the accuracy of other
tools on the same dataset follows a similar pattern.24

We further assessed our method for correctly mapping carbon atoms, ignoring all other atoms,
for two reasons: First, it appears that the accuracy on carbon atoms is of particular interest since
many applications that make use of AM data, track only carbon atoms.2,5 Second, this analysis
can give us better insights into the capabilities and weaknesses of the ML-based method. More
specifically, since there are more C−C bond instances, given the nature of common biological
compounds, we would expect a higher accuracy on carbon mappings for an ML-based algorithm.
Indeed, our analysis showed that on average the accuracy on carbon atoms is 97.86% when the
overall accuracy considering all atoms is 94.01%. The manual inspection of the reactions for which
the computed mappings are not in agreement with the manually annotated mappings revealed
that the majority of the wrong mappings concerns oxygen atoms. All reactions for which the
computed mapping is not in agreement with the manually annotated mapping are illustrated in
the supplementary material A with the differences between the two mappings being highlighted
(section S3).

A common case among the reactions in which the computed mapping is not in complete agree-
ment with the manually annotated (10 reactions out of 23 wrong reactions on average) presents the
following pattern: (1) there is a reactant molecule that acts as an oxygen donor (usually a water
molecule), (2) there is at least one reactant with at least one phosphate structure (or a sulphate)
(3) the reaction center is located within the phosphate structure. The disagreement between the
computed and the annotated mapping is on whether the phosphate group retains its oxygens or the
oxygen from the water molecule is attached to the phosphorus atom after the reaction, as shown in
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Figure 5: Percentage of reactions that are wrongly mapped by the AMLGAM method for each EC
class

Figure 6. In the illustrated example, there is a diphosphate structure and the oxygen atom from the
water molecule is attached to a different phosphorus atom regarding the two mappings. Although
the curators provide only one mapping, it is not clear whether the annotated mapping is the only
possible mapping or the reaction mechanism found by the AMLGAM method is also possible.
However, for the evaluation of the accuracy of our method we consider all mappings that are not
in complete agreement with the manually annotated mappings (regarding all atoms) as wrong.

Among the remaining reactions for which the computed mapping suggests a different reaction
mechanism than the manual annotation, we have detected cases with complex reaction mecha-
nisms that are very challenging for an AM tool. Figure 7 illustrates such an example in which
even the manually annotated mapping is not accurate. The illustrated reaction is a critical step
in glycolysis catalyzed by phosphoglycerate mutase (PGM). It converts 3-phosphoglycerate to
2-phosphoglycerate through an intermediate compound, 2,3-phosphoglycerate, with the PGM en-
zyme contributing one phosphate group. Without knowledge of the intermediate compound, one
may assume that this is a simple transfer of the phosphate group from one position to another
which corresponds to the minimum edit distance and is what the AMLGAM method outputs. In
reality, the 2-phoshoglycerate retains the phosphate group that comes from the enzyme. Since
the AMLGAM method is based on the assumption that each reaction proceeds with the minimum
activation energy as a single step transformation, it cannot handle such a case. It should be noted
though, that all AM methods that have been tested on that dataset, both optimization-based and
common substructure-based, failed in this case as expected due to insufficient information.24

The manual inspection of the cases where the computed mapping was not in agreement with
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(a) Mapping computed by the AMLGAM method

(b) Manually annotated mapping

Figure 6: The AMLGAM method attaches the oxygen atom of the water molecule to the phos-
phate group of the Glucose-1-phosphate while the manually annotated mapping attaches it to the
phosphate group of the AMP molecule

the manually annotated, revealed the following two cases: i) minor errors in the annotation of
the equivalent atoms (7 cases), and ii) atom equivalences that are not indicated by the curators (6
cases). We have fixed all these cases and we provide the updated dataset in the supplementary file
B. It should be mentioned that the errors of case (i) do not affect the accuracy of the compared
tools in the earlier comparative study by Gonzalez et al.24 on which our comparison relies on.
For the second case though, it is not clear whether the non annotated equivalences are taken into
account for determining the accuracy of the compared AM tools and in general whether any manual
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(a) Mapping found by AMLGAM (b) Manually annotated mapping

(c) Actual reaction mechanism

Figure 7: A chemical reaction with an intermediate step where both, the mapping computed by
the AMLGAM method and the manually annotated mapping, do not depict the actual reaction
mechanism

inspection was performed for fixing errors. However, the number of problematic cases we have
detected is not big enough to create significant changes in the comparison we present here.

5.4.2 Comparison with existing AM tools on the Recon 3D dataset

The comparative evaluation of the AMLGAM method against six existing AM methods on the
Recon 3D dataset showed that our ML-based method achieved the highest accuracy. The compar-
ison has been performed based on the results that have been reported in the comparative study by
Gonzalez et al.24 Figure 8 shows the error rate of each method as a percentage of the reactions
that disagree with the manually annotated mapping. The two existing MILP-based methods, the
MED approach by First et al.,16 called DREAM, as well as the MWED approach by Latendresse
et al.12 are among the compared algorithms. The comparison with those two algorithms is of
particular interest in our study because our method consists an evolution of those two methods.
From the remaining four evaluated algorithms, two of them are MCS based techniques (RDT19

and CLCA20) and the other two (AutoMapper and ICMAP7) combine techniques from both ap-
proaches, optimization and MCS. The best scoring algorithms in terms of accuracy among the 6
existing methods were the RDT tool (91.31%), First’s MED method (DREAM) (90.53%) and the
CLCA algorithm (91.62%). Tested on the same dataset, the AMLGAM method had an average
accuracy of 94.06%. We should mention though, that not all algorithms have been run on the
whole dataset of 382 reactions because the authors did not have access in the code of all meth-
ods.24 The number of reactions that have been mapped by each method is shown in Table 3. As an
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additional note, the accuracies of the existing methods, as presented here, have been adjusted after
the removal of the duplicate reactions that existed in the initial dataset (see section 5.2). In the
supplementary document C, we provide the results of each method for each reaction in the Recon
3D dataset.

Figure 8: Percentage of wrongly mapped reactions for the compared AM methods on the set of
382 manually curated reactions from Recon 3D database

An interesting finding of the comparative study is that Latendresse’s MWED approach did not
score better comparing to the simple MED approach of the DREAM tool. This finding contradicts
the outcome of an earlier comparison in which the MWED outperformed the DREAM tool.12

These contradicting results can be an indication of over-fitting of the manually selected weights
in the initial dataset which raises concerns regarding the selection of parameters that can handle
larger datasets. On the other side, the ML-based MWED method, presented here, provides a more
scalable method for determining the bond stabilities which appears to generalize better comparing
to the manually chosen values. In the AMLGAM method the stabilities are determined by ex-
amining each bond individually and taking into account the chemical context while the manually
chosen weights are less flexible regarding the variable chemical environment of each bond.

A more thorough examination of the reactions on which each method fails to find the correct

Table 3: Number of reactions tested by each algorithm

Algorithm AMLGAM RDT CLCA DREAM MWED AutoMapper ICMAP
Reactions 382 380 203 380 355 382 368
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(a) AMLGAM versus MCS techniques (b) AMLGAM versus optimization techniques

Figure 9: Venn diagrams showing the overlapping between the sets of wrong reactions

mapping revealed that the compared algorithms have different weaknesses. The overlapping be-
tween the sets of wrongly mapped reactions is presented in the Venn diagrams of Figure 9. More
specifically, the diagrams show the overlapping between the MCS based methods and the AML-
GAM method as well as the overlapping between the three optimization (MILP)-based methods in-
cluding AMLGAM. Indeed, the only noteworthy overlapping occurs between the two MCS based
methods. In particular, about 65% of the cases that are wrongly mapped by the CLCA method
are also wrongly mapped by the RDT tool. Although this may seem a tentative conclusion, since
the CLCA tool has been evaluated on a smaller set of reactions (as shown in Table 3), the man-
ual inspection showed that, indeed, some of the common errors correspond to intrinsic limitations
of the MCS approach. More specifically, the common errors between the MCS based methods
correspond to reactions that include reactant molecules with common substructures which are pre-
served through the reaction. One such example is shown in Figure 10 where the two reactant
molecules, Coenzyme-A and 3-Oxo-Hexanoyl Coenzyme-A share a common substructure. This re-
action scheme is common to many metabolic reactions in fatty acid oxidation. In such a case, an
MCS based algorithm may mismatch the preserved structures. This observation confirms Arita’s
findings who had highlighted the cases on which the MCS based methods fail to identify the correct
mapping.1 On the other side, the optimization based techniques were capable of correctly mapping
these cases. Therefore, although the MCS based methods achieved an overall high accuracy it ap-
pears that they have intrinsic limitations that the optimization methods can address. However,
the capabilities of the optimization-based methods are limited by the assumption of the minimum
energy that does not hold for more complex reactions such as reactions with intermediate steps.

5.4.3 MetaCyc dataset

Balanced Reactions Regarding the MetaCyc dataset of 7,380 balanced reactions, we obtained
the following results: Our method exceeded the time limit of one hour in 4.6% of the cases (337
reactions). For the remaining cases in which the MILP solver found at least one solution, we
compared the mappings computed by the AMLGAM method against the atom mappings provided
by the MetaCyc database. The agreement between the two mappings was around 90.16% excluding
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(a) Mapping found by the MCS based methods

(b) Mapping found by the AMLGAM method in agreement with the manually annotated mapping

Figure 10: A case where the MCS based methods fail because there are common substructures in
the reactants that are preserved through the reaction

timed-out reactions and 86.04% if timed-out reactions are taken into account. The comparison was
performed with respect to all atoms except hydrogens which are not mapped by both methods. It
should be noted that we have not manually inspected the cases where the mappings computed by
the AMLGAM method are not in agreement with the MetaCyc mappings (due to the large size
of the dataset) and therefore we believe that the calculated percentage is a lower bound of the
accuracy of our method. Furthermore, taken into account that the MetaCyc dataset is much larger,
diverse, and noisy comparing to the Recon 3D dataset, the relatively high percentage of agreement
shows the potency of the ML-based method. We recall here that the mappings in MetaCyc are
computationally derived.

Unbalanced Reactions For the evaluation of the ability of the AMLGAM method to handle
unbalanced reactions, we have divided the dataset of unbalanced reactions into three categories:
1) reactions with a small number of missing atoms (1–3 atoms), 2) reactions with wrong stoi-
chiometry, 3) reactions with incomplete information for computing the atom mapping. The first
category consists mostly of reactions with missing oxygens, which most likely imply missing wa-
ter molecules. In this category, the missing atoms appear not to be crucial for the computation of
the AM. The second category refers to cases in which the involved molecules are known but the
stoichiometry is wrong resulting in unbalanced reactions with usually many missing atoms. The
last category contains reactions in which not all involved compounds are known and the structure
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of the missing molecules is crucial for determining the AM. Table 4 presents the number of re-
actions and the average number of missing atoms per category as well as the number of reactions
for which the AMLGAM method computed a mapping and the number of reactions for which the
method timed out without finding a solution.

Table 4: Statistics and results on the dataset of unbalanced reactions

category 1 category 2 category 3

Number of reactions 9 11 2
Average number of missing atoms 1.3 32.8 19

Number of mapped reactions 9 4 2
Number of timed out reactions 0 7 0

The AMLGAM method computed mappings for all reactions in categories 1 and 3 but timed
out for most of the reactions of category 2 which includes the reactions with the highest number
of missing atoms on average. Since MetaCyc does not provide AMs for unbalanced reactions we
were not able to evaluate the accuracy of the computed mappings. However, manual inspection
of the computed mappings gives us high confidence for the AMs of the category 1 reactions and
lower confidence for the category 2 reactions, based on the given information. For category 3,
the assessment of the computed mapping was not easy since the available information was not
adequate to determine the reaction mechanism by inspecting the given reactants and products. In
the supplementary material A (section S4), we provide the mappings for all unbalanced reactions
for which the AMLGAM method computed a mapping within the one-hour time limit.

Figure 11: A category 3 reaction where the structure of the missing molecules is crucial for deter-
mining the reaction mechanism

In the case of an unbalanced reaction, the AMLGAM method tries to find a maximal mapping
allowing unmapped atoms. Figure 11 shows an example of a category 3 reaction in which a diphos-
phate molecule is missing in the products side and therefore the atoms in the diphosphate group
of DMAPP in reactants as well as the two extra carbons are left unmapped. The post-processing
step, though, may map such atoms if equivalences between atoms exist. This step is more crucial
for category 2 reactions where the wrong stoichiometry may be fixed, to some extend, by iden-
tifying equivalent atoms. This effect can be seen in the reaction of Figure 12 where the reactant
glutathione molecule is mapped twice in the products side, by identifying the symmetry in gluta-
tione disulfide, implying the existence of two glutathione molecules in reactants. However, most
reactions of category 2 are more complicated and either the structure of the missing molecules is
not preserved or additional molecules are missing. Indeed, the reaction of Figure 12 is a more com-
plicated case where in addition to the wrong stoichiometry in the reactants side, a water molecule
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is also missing in the products side. Despite the fact that there are missing atoms in both sides
of the reaction, which contradicts the assumption that the imbalance occurs only in one side of
the reaction (constraint 6 in section 4.2), the AMLGAM method manages to find a reasonable
mapping.

Figure 12: An unbalanced reaction that the AMLGAM method cannot handle because molecules
are missing from both sides. The reaction equation can be balanced by adding one glutathione
molecule in reactants and one water molecule in products.

5.4.4 Additional experiments

In order to understand the influence of the classification algorithm and the selected features for the
bond representation, we performed a series of additional experiments. More specifically, regard-
ing the classification task we investigated the following algorithms: logistic regression, k-nearest
neighbors (k-NN), neural networks with logistic loss and random forests. The classification algo-
rithms were evaluated based on the accuracy in the classification task, i.e., predicting the fate of
a bond in a chemical reaction. Based on our results, the random forest had the best performance
while the k-NN algorithm was found to be the weakest classifier. A comparative analysis of the
above models is not presented here as it is out of the scope of this study. It is worth mention-
ing, though, that our results showed that the performances of the above algorithms did not have
significant deviations. On the other side, the choice of the features for representing the bonds
appeared to have a significant impact. Although we attempted to perform feature selection prior
to the application of the classification algorithm it turned out to worsen the performance. These
findings highlight the importance of the selected descriptors in QSAR studies that seek to correlate
molecular structures with certain activities.

In our approach, the bond features are manually selected based on our intuition on what affects
the reactivity of a bond. Although the present method could facilitate the inclusion of additional
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features, other than those discussed in section 4.3, we settled in this representation in an effort to
1) avoid overfitting and 2) minimize the input from the user. However, it worths mentioning that
we have investigated the inclusion of enzyme information using the EC identification numbers.
This addition, though, did not seem to affect the accuracy of the atom mappings on the Recon
database. On top of that, many reactions in chemical databases have not been assigned an EC
number and therefore requiring such input from the user could be regarded as a limitation. Finally,
we should clarify that the bond distance, which is used here as a feature in the bond representation,
is calculated based on the atom coordinates of the rxn files. Based on our experiments, the bond
distance did not affect the results on the Recon dataset but it had a more significant impact on the
MetaCyc dataset. Since this information was available for both datasets, we finally included this
feature in the bond representation.

6 Conclusion
We have presented an optimization-based approach for automatically determining the atom map-

ping (AM) of a chemical reaction, called AMLGAM (Automated Machine Learning Guided Atom
Mapping). The computed mapping corresponds to the reaction mechanism which favors the break-
age/formation of the less stable bonds. In this work, we define the stability of a bond using a
probabilistic framework and we use machine learning techniques for its estimation based on local
topological and atomic features that characterize the bond and its surrounding. The optimiza-
tion problem is solved as a MILP problem which we develop such that the method can handle
unbalanced reactions. The AMLGAM method outputs all optimal solutions and indicates equiv-
alent mappings due to indistinguishable atoms. We have evaluated the accuracy of our method
on a set of 382 manually curated balanced chemical reactions and we have run our method on a
much larger and diverse dataset of 7,400 chemical reactions including unbalanced reactions. We
have also compared our method against six AM tools, including common substructure-based and
optimization-based methods, based on results from a previous study. The comparison showed that
the AMLGAM method achieved the highest accuracy. In particular, we show that it has improved
the accuracy of the previous optimization-based techniques while it has correctly handled the in-
trinsic weaknesses of the MCS-based methods. Tested on a set of unbalanced chemical reactions
we showed that our method is capable of dealing with reactions with a small number of missing
atoms without the need for re-balancing the reaction equation.
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