
Head-Corner Parsing
using

Typed Feature Structures

Mark Moll

August 1995

Graduation Committee
Dr.ir. H.J.A. op den Akker
Prof.dr.ir. A. Nijholt
Ir. H.W.L. ter Doest
Prof.dr. C. Hoede (Dept. of Appl. Math.)

Subdepartment Software Engineering and
Theoretical Computer Science
Computer Science Department

Universitity of Twente

Abstract

In this report a description will be given of how typed feature structures can
be specified. A specification language will be presented for the specification
of types, words and grammar rules. An unification algorithm for typed feature
structures as well as an algorithm to compute the least upper bound relation for a
type lattice will be given. Finally, a head-corner parsing schema for typed feature
structures will be presented.

Samenvatting

In dit rapport zal een beschrijving worden gegeven van de manier waarop getype-
erdefeature structureskunnen worden gespecificeerd. Een specificatie taal zal
worden gepresenteerd voor de specificatie van types, woorden en grammatica
regels. Een unificatie algoritme voor getypeerdefeature structureszal worden
gegeven, evenals een algoritme om de kleinste bovengrens relatie voor een type
tralie te berekenen. Tot slot zal er eenhead-cornerontleed schema voor getype-
erdefeature structuresworden gepresenteerd.

iii

iv

Preface

This is my Master’s thesis with which my Computer Science study at the University of Twente has come to
an end. The assignment has been carried out between November 1994 and August 1995 at the subdepartment
Software Engineering and Theoretical Computer Science.

During a period of time of about 9 months I have done quite some reading, writing and programming.
Actually, most of the time I have spent on programming. If there’s one thing I have learnt from my assign-
ment, then it is, that it always takes about ten times longer to program something than you think it would
take.

There are a number of people that I would like to thank. First of all, I am grateful to the members of
my graduation committee for their time and the support they have given me. Also I would like to thank my
friends and family, who had to put up my ‘self-proclaimed social isolation’ these last two months. Finally,
I’d like to mention Risto Miikkulainen, from whom I have learnt a lot about doing research.

Mark Moll,
August 1995.

v

vi

Contents

1 Introduction 1
1.1 Assignment Description . 1
1.2 SCHISMA . 2
1.3 Context-Free Grammars . 2
1.4 Overview . 3

2 Types and Feature Structures 5
2.1 Types . 5
2.2 Feature Structures . 6
2.3 Unification . 6

3 Specification 13
3.1 Specification of Types . 14
3.2 Specification of Words . 16
3.3 Specification of Grammar Rules . 17
3.4 Comparison of a Typed and Untyped Grammar . 17

4 Expressing Semantics 21
4.1 Extensions . 21
4.2 Scope of Variables . 22
4.3 Future Extensions of QLF . 23

5 The Parser 25
5.1 Context-Free Head Grammars . 25
5.2 Head-Corner Parsing . 26
5.3 HC Parsing using Typed Feature Structures . 28
5.4 Implementation . 30

6 Discussion 35
6.1 Unification Revisited . 35
6.2 Future Work . 36

vii

viii Contents

7 Conclusions 39

A The syntax ofTFS 45

B Description of Classes and Methods 49
B.1 TheFeatureStruc Class . 50
B.2 TheFeatureStrucList Class . 52
B.3 TheType and theTypeList Class . 53
B.4 TheWord and theLexicon Class . 53
B.5 TheRule Class . 54
B.6 TheGrammar Class . 54
B.7 TheRuleIterator Class . 55
B.8 TheItem Class and Its Subclasses . 56
B.9 TheItemList Class and Related Classes . 56
B.10 TheScanner Class . 56
B.11 TheParser Class . 57
B.12 TheSymbolTable Class . 57
B.13 TheEntry Class and Its Subclasses . 59

C Software Development Tools 61
C.1 Source Code Editing and Maintenance . 61
C.2 Compilers and Compiler-Compilers . 62
C.3 Debugging . 63

D Test Results 65
D.1 The Type Lattice Example . 65
D.2 The ‘Jan lives in Amsterdam’ Example . 66

Chapter 1

Introduction

“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it
means just what I choose it to mean—neither more nor less.”

“The question is,” said Alice, “whether youcanmake words mean so many
different things.”

“The question is,” said Humpty Dumpty, “which is to be master—that’s all.”

Lewis Carroll,Through the Looking Glass

The question is what language is being used, I would say. If the language being considered is a formal
system, like logic or mathematics, Humpty Dumpty would be right. In these languages things have

exactly the meaning that has been assigned to them—neither more nor less. Butwithin one formal system
the meaning of the entities is fixed, otherwise it would not be a very useful system. With natural languages
words have a meaning upon which there is some general agreement. That is, words have a more or less
fixed meaning, which is what Alice is trying to say. But the same word can have different connotations for
different people, based on the mental models that have been formed for each word Sowa (1984).

1.1 Assignment Description

In computational linguistics formal systems are defined and used to describe natural language utterances.
Of course, these systems cannot fully capture the (intended) meaning of natural language, but for most
practical situations this is not a problem. In this report I will describe (a specification language for) such a
formal system: the typed feature structures. The specification language itself could also be called a formal
system, but that might go a bit to far; no statements about the soundness or completeness of this language
are made. But designing a formal system was not the aim of my thesis. The aim was to design a complete
parsing system that could parse sentences using typed feature structures. In order to do so I could use an
existing implementation of a parser for untyped feature structures. The first version of this parser was made
by Verlinden (1993). An improved version of this parser, that uses a more efficient unification algorithm
was made by Veldhuijzen van Zanten (1994). This parser needed to be reimplemented to make it suitable
for typed feature structures. Also, a specification language and a new unification algorithm for typed feature

1

2 1. Introduction

CLIENT KEYBOARD INPUT

OUTPUT

PARS

SCHISMA

BASE

DATA-

MAF

GENERATION

GRAMMAR

SCHISMA

SCHISMA

LEXICON

SCHISMA
DICTIONARY

DIALOGUE

MANAGER

Figure 1.1:Conceptual view ofSCHISMA.

structures needed to be defined.

1.2 SCHISMA

My assignment was carried out as part of the SCHISMA project. This is a joint research project of Parlevink
(the language-engineering project of the Computer Science Department) and the Speech and Language
group of KPN Research (the R&D department of the Royal PTT Nederland). Within the SCHISMA project a
theater information and booking system is being developed. This dialogue system is going to have a natural
language interface.

A global architecture of the Schisma dialogue system is shown in figure 1.1. This is the architecture
of a first prototype of the dialogue system. The actual status of a dialogue does not dynamically influence
the process of parsing, nor the preprocessing of the input in the module MAF, that handles morphological
analysis and fault-correction. The system processes user input typed in on a keyboard. The parser is that
part of the dialogue system that should identify the relevant semantic information communicated by the
user. It outputs one (ideally) or several (in case of semantic ambiguities) analyses of the input from the MAF

module. The dialogue manager then selects the most likely analysis given the status of the current dialogue.
More about the dialogue manager can be found in Hoeven et al. (1995).

With my thesis project I focus on the PARS module. To allow the PARS module to work independently
from theMAF module, the parser is equipped with a (very simple) scanner to read words and look them up
in a lexicon. When the MAF and PARS module are integrated, the scanner can be removed.

1.3 Context-Free Grammars

In the field of computational linguistics (natural) languages are formalized by means of a grammar and a
lexicon1. There are many classes of grammars Sudkamp (1988). An important class of grammars are the

1Often the lexicon is considered to be a part of the grammar. Henceforth we will use the word ‘grammar’ to refer to both the
grammar and the lexicon.

1.4 Overview 3

context-free grammars. A context-free grammarG is a 4-tuple〈N,Σ,P,S〉. N is a set of nonterminals (‘names
of parts of sentences’). The setΣ is a collection of terminals. Strictly speaking, the terminals correspond
to words, but often word categories, like ‘noun’ or ‘verb’, are used as terminals instead of words. These
word categories are also known as pre-terminals to distinguish them from the words. The elements of the
setV = N∪Σ are calledconstituents. The third part of a grammar,P, is a set of production rules. Finally,
the symbolS is the start symbol of the grammar.S is a nonterminal (S ∈ N) and is the first symbol in a
derivation of a sentence. The following example illustrates these concepts.

Let grammarG be defined as

G = 〈N,Σ,P,S〉
N = {S,NP,VP}
Σ = {∗det, ∗noun, ∗verb}
P = {S→ NP VP,

VP→ ∗verb NP,
NP→ ∗det ∗noun}

The nonterminalsS, NP andVP are commonly used and are intended to stand for a sentence, a noun phrase
and a verb phrase, respectively. The terminals∗det, ∗noun and∗verb are used to denote a determiner, a noun
and a verb, respectively. This grammar can be used for sentences like “The man bites a dog”. If we replace
the words in this sentence by their word categories, we get “∗det ∗noun ∗verb ∗det ∗noun”. A possible
derivation of this sentence, given the grammar above, is

S ⇒ NP VP⇒ ∗det ∗noun VP⇒ ∗det ∗noun ∗verb NP
⇒ ∗det ∗noun ∗verb ∗det ∗noun

With a derivation tree all possible derivations can be seen in one figure. For our example the derivation tree

‘the’ ‘bites’

*det *noun *verb

NP VP

NP

*det *noun

S

‘a’ ‘dog’‘man’

Figure 1.2:The derivation tree for the sentence “The man bites a dog”.

is given in figure 1.2. Note that there is also another derivation possible.
Ambiguity can now be introduced in terms of derivation trees. A sentence is considered to be ambiguous,

if there is more than one valid derivation tree for it. So, a sentence that has multiple derivations, but only
one derivation tree is not considered to ambiguous. A grammar from which ambiguous sentences can be
derived is also called ambiguous.

1.4 Overview

In this section I shall give an overview of the rest of my thesis. In chapter 2 the general notion of types will
be introduced. In this chapter the type theory is applied to the domain of feature structures. A description of

4 1. Introduction

a new unification algorithm for typed feature structures based on the algorithm of Veldhuijzen van Zanten
will conclude this chapter.

In chapter 3 the type specification languageTFS is introduced. How types, words and grammar rules
can be specified is explained here. Also, an algorithm for the computation of the least upper bound relation
of a type lattice will be given. At the end of this chapter an example specification will be used to explain the
advantages of typing for writing a grammar.

Chapter 4 deals with the way that semantics can be specified with theTFS language. Semantics can
be expressed using a quasi-logical language called QLF. Some implementation issues like the way unbound
variables are represented are also described here.

In chapter 5 the head-corner parsing algorithm will be described. This algorithm will be applied to typed
feature structures. Again, the most important implementation issues will be discussed. A short description
will be given of what classes2 have been defined and how they are related.

In chapter 6 different approaches and implementations of unification will be discussed. This chapter is
concluded with a section on future work. The parts of the implementation that still need to be done are listed
here. Also, suggestions are given how theTFS system could be extended at at theoretical level.

Finally, in chapter 7 some concluding remarks will be made about the most important aspects of types,
feature structures and head-corner parsing with respect to theTFS system.

2The term ‘class’ is a C++ concept, used to describe a collection of similar objects.

Chapter 2

Types and Feature Structures

2.1 Types

Types can be used to categorize linguistic and domain entities. In addition to that the relations between
entities can be defined using an inheritance hierarchy. For types we follow the definition of Carpenter

(1992). Types can be ordered using the subsumption relation. We writes v t for two typess and t if s
subsumest, that is,s is more general thant. In that cases is called asupertypeof t, or inversely,t is a
subtypeof s. With the subsumption relation the set of types form a lattice (see figure 2.1).

The type that subsumes all other types (“the most general type”) is called bottom and is denoted by⊥.
The most general subtype for a pair of typess andt is called theleast upper boundand is written asst t. For
instance, in figure 2.1 we havest t = x andvtw = >. In the latter case the two types contain conflicting
information and are hence inconsistent.

There are two ways to specify a type lattice. The first way is to express each new type in terms of its
subtypes. This can be seen as a set-theoretical approach: each type is a set of possible values and a new type
can be constructed by taking the union of other (possibly infinite) sets. For instance, the typefruit could be
defined as

fruit := apples∪bananas,

s

u v

t

w x

Figure 2.1:A type lattice. The lines represent the subsumption relation. More specific types are placed
higher in the lattice. The top element ‘>’ is used to denote inconsistency between types.

5

6 2. Types and Feature Structures

whereapples is a set of all apples andbananas is a set of all bananas. The bottom element⊥ is then the
set of all entities within the domain and the top element> is the empty set/0.

The other way to specify a type lattice is to express each type in terms of its supertypes. In this context
the term ‘inheritance’ is often used; a type inherits information from its supertypes. The disadvantage of
specifying types this way is that inconsistencies in the lattice are easily introduced. If a type is specified
to have two supertypes that contain conflicting information, that type would be inconsistent1. With the set-
theoretical approach this cannot happen. However, from the grammar writer’s point of view it is often easier
to first introduce general concepts and later differentiate them into more specific types than to start with the
most specific types and generalize over them to construct new types. Hence, in the specification language
described in chapter 3 the second approach is followed.

2.2 Feature Structures

Feature structures provide a convenient way to keep track of complex relations. During parsing constraints
can be checked with feature structures, and after parsing the meaning of the language utterance can (hope-
fully) be extracted from them. The structure of our feature structures is similar to the more traditional form
of feature structures as used in thePATR-II system Shieber (1986) and those defined by Rounds and Kasper
(1986).

Typed feature structures are defined as rooted DAGs (directed acyclic graphs), with labeled edgesand
nodes. More formally, we can define a typed feature structuret f s as a 2-tuple〈t, f eatures〉, wheret ∈ Types,
the set of all types, andf eatures is a (possibly empty) set of features. A feature is defined as a feature name
/ feature value pair. A feature value is again a typed feature structure. At first glance the labels on the nodes
seem to be the only difference with the traditional feature structures, but there is more to typing than that.
Every type has a fixed set of features. Such a feature value type can be seen as the appropriate value for
a particular feature. It should be equal to the greatest lower bound (the most specific supertype) of all the
possible values for that feature. So a typed feature structure is actually an instantiation of a type. Types are
used as a sort of templates. By typing feature structures we restrict the number of ‘allowed’ (or appropriate)
feature structures. Putting these restrictions on feature structures should fasten the parsing process; at an
earlier stage it can be decided if a certain parse should fail.

Another advantage of typing feature structures is that it is no longer necessary to make a distinction
between nodeswith features (‘complex nodes’), nodeswithout features (‘constant nodes’) and nodes with
type⊥ (‘variable nodes’) as is often done with traditional feature structures. In a consistent definition of
the type lattice the least upper bound of a complex and a constant node should always be> (unless that
constant node represents an abstract, under specified piece of information), so that two such nodes can never
be unified.

2.3 Unification

The basic operation on feature structures is unification. New feature structures are created by unifying
two existing ones. In figure 2.2 two basic examples show what unification means. In these feature graphs
agreement, singular, plural andthird are names of types, andnumberandpersonare names of features.

The unification of two feature structures fails if:

• the least upper bound of the two root nodes is>, or

1The specification of type information is treated in chapter 3.

2.3 Unification 7

agreement

singular

number person

third t

agreement

number person

thirdplural = >
agreement

singular

number person

t

agreement

number person

third =

agreement

singular

number person

third

Figure 2.2:Basic unifications.In the first case unification fails, i.e. the feature structures contain conflicting
information. The second case is self-evident.

n parses HCP TOM
4 5 100 542
5 14 249 1,827
6 42 662 6,268
7 132 1,897 22,187
8 429 5,799 80,685

Table 2.1:An untyped version of the unification algorithm compared with Tomabechi’s algorithm.

• the unification of the feature values of two features with the same name fails.

Unification is a costly operation in unification-based parse systems, because it involves a lot of copying
of feature structures. In many implementations of parsing systems it takes more than 80% of the total parse
time. Several algorithms have been devised to do unification efficiently Tomabechi (1991); Wroblewski
(1987); Sikkel (1993). The efficiency of unification can be increased by minimizing the amount of copying
in cases that unification fails, while on the other hand the overhead costs to do this should be as small
as possible. Till now Tomabechi’s algorithm seemed to be the fastest. With this algorithm the copying
of (partial) feature structures is delayed until it has been established that unification can succeed. But
Tomabechi already suggests in a footnote that the algorithm can be improved by sharing substructures. This
idea has been worked out into an algorithm Veldhuijzen van Zanten and Op den Akker (1994). The copy
algorithm has been implemented in a predecessor of the current parser and has proven to be very effective in
experiments. Table 2.1 shows the results of one of these experiments. The algorithms were tested with the
‘sentences’Jann,n = 4 . . .8, using the following grammar:S→ S S | Jan (so the sentences are extremely
ambiguous). The first column stands for the sentence length, the second column shows the number of parses
and the third and fourth column show the number of nodes created during unification for Veldhuijzen van
Zanten’s and Tomabechi’s unification algorithm.

By introducing the types, the overhead increases slightly; for every two nodes that are to be unified the
least upper bound has to be looked up in a table. But still, we expect an improvement in the performance.

Before the algorithm is described in more detail, it is necessary to define the general properties of a
node in a feature structure. These properties (‘members’ in the object-oriented programming terminology,
or ‘fields’ in a traditional record implementation) can be divided in two kinds: (1) properties that describe
the structure of a feature structure and (2) bookkeeping properties, that are used to store intermediate results.
For the first kind only

• a type id, that uniquely defines the feature names and the appropriate values for the corresponding
features, and

8 2. Types and Feature Structures

s

v w

u tt

v x

s
f g f g

h k k h k

(a) The initial feature structures.

s

v w

u tt

v x

s
f g f g

h k k h k
t

w

(b) The feature values off have been unified.

s

v w

u tt

v x

s
f g f g

h k k h k
t

w

(c) The feature values ofg have been unified.

t

v

s
f g

h k

w

(d) The resulting unifact.

Figure 2.3:An example unification. A type id on the right of a node stands for the auxiliary type of that
node. The dashed arrows indicate forward links. If a node has a forward link to another node, the feature
structures starting in these nodes are unifiable. It is assumed thatxv w anduv t.

• a set of features, where each feature consists of a name and a value (i.e. an instance of a certain type)

are needed. To handle the bookkeeping we need the following properties:

• a forward pointer: a pointer to another node, of which the unification algorithm has established that
unification with this node is possible,

• an auxiliary type id: the type id of the corresponding node in the unifact (the result of unification),

• auxiliary features: features of the node that is unified with the current node, that do not occur in the
set of features of the current node,

• an unifact pointer: a pointer to the unifact that is constructed by the copy algorithm,

• a forward mark and an unifact mark: markers containing a generation number indicating whether the
forward and unifact pointer can be used in the current unification process.

Unification is executed as a two-step operation: first, it is checked whether unification is possible, that is,
the two feature structures to be unified contain no conflicting information. Second, the unifact is constructed
using the bookkeeping information left by the first step.

Though the algorithm is implemented with object-oriented techniques in C++, the algorithm is displayed
in conventional pseudo-Pascal code to enhance the readability for those not familiar with these techniques.
Step one, the check if unification is possible, is shown in figure 2.4. Some auxiliary procedures for the
unification algorithm are displayed in figure 2.5. Finally, figure 2.6 shows how step two, the creation of the
unifact, is implemented.

The example in figure 2.3 shows how the unification algorithm works. First the generation counter is
increased to make any old intermediate results obsolete. The procedureuni�able is then called with the two
s nodes as arguments. Now subsequent calls are made touni�able for each feature value pair of the two
s nodes. First the feature structures starting in the twot nodes are unified. They differ only in the feature
value for thek feature. It is assumed thatx v w, so that the two nodes are unifiable. The auxiliary type will
then bew. Now the twot nodes are unifiable and a forward link from onet node to the other one can be
made (see figure 2.3b). Now the feature values for theg feature can be unified. Because of the forward link

2.3 Unification 9

proc unify(t f s1, t f s2)
nextGeneration ();
if uni�able(t f s1, t f s2)

then
return copyUnifact (t f s1)

else
return >

fi
.

proc uni�able(t f s1, t f s2)
t f s1 := dereference (t f s1);
t f s2 := dereference (t f s2);
if (t f s1 = t f s2) then return true fi ;
t f s1→auxType := lub (t f s1, t f s2);
if (t f s1→auxType =>)

then
return false

fi;
stillUni f ies := true;
while stillUni f ies do

foreach f ∈ t f s2→ f eatures
if (f ∈ t f s1→ f eatures)

then
stillUni f ies := uni f iable(t f s1→ f , t f s2→ f)

else
add featuret f s2→ f to t f s1→auxFeatures

fi
od

od;
if (stillUni f ies = true)

then
forward (t f s2, t f s1);
return true

else
return false

fi
.

Figure 2.4:The unification algorithm. An improved version of Tomabechi’s quasi-destructive unification
algorithm.

10 2. Types and Feature Structures

proc nextGeneration ()
currentGeneration := currentGeneration +1

.

proc dereference (t f s1)
if t f s→ f orwardMark = currentGeneration ∧ t f s→ f orward 6= nil

then
return t f s→ f orward

else
return t f s

fi
.

proc forward (t f s1, t f s2)
t f s1→ f orward := t f s2;
t f s1→ f orwardMark := currentGeneration;

.

Figure 2.5:Auxiliary procedures for the unification algorithm

of the previous step, the feature values of thef andg feature of the left feature structure are now unified. So
for unification to succeed we have to assume thatu v t. Under this assumption a forward link from theu
node to the leftt node can be made and the initial call touni�able returnstrue (see figure 2.3c). The final
step is then a call tocopyUnifact to create the unifact from the intermediate results (see figure 2.3d). Note
that this unification is non-destructive; both operands remain intact.

The procedurelub (called fromuni�able) determines the least upper bound of two types. This least
upper bound can be looked up in the type lattice as will be explained in chapter 3. If two types have> as
least upper bound, they are not unifiable and it is not necessary to look at the feature values of the types.

The procedurecopyUnifact (figure 2.6) only creates a new node if it is not possible to share that node
with an existing feature structure. A new node is created bycreateTFS, which makes a node of the right
type and initializes the features with appropriate values. The variableneedToCopy is used to check whether
a new node has to be created. Only if one of the following two situations occurs it is necessary to make a
new node:

• the unifact has more features than the feature structure from which it constructed, that is, the number
of auxiliary features is greater than 0,

• the unifact differs from the feature structure from which it constructed in at least one feature value.

Otherwise the node will be shared with the current node of the typed feature structure from which the unifact
is constructed.

2.3 Unification 11

proc copyUnifact (t f s)
t f s := dereference (t f s);
if (t f s→uni f actMark = currentGeneration)

then
return t f s→uni f act

fi;
needToCopy := (#t f s→auxFeatures > 0);
i := 0;
foreach f ∈ t f s→(f eatures∪auxFeatures) do
copies[i] := copyUnifact (f);
needToCopy := needToCopy ∨ (copies[i] 6= f);
i := i+1

od
if needToCopy

then
if t f s→uni f act = nil

then
t f s→uni f act := createTFS (t f s→auxType)

fi;
for j := 0 . . . i−1 do

add featurecopies[j]to t f s→uni f act
od;
t f s→uni f actMark := currentGeneration;
return t f s→uni f act

else
return t f s

fi
.

Figure 2.6: The copy algorithm. This procedure generates the unifact after a successful call touni�-
able(t f s1, t f s2).

12 2. Types and Feature Structures

Chapter 3

Specification

To specify a language it is necessary to have a metalanguage. Almost always the usage of a specifi-
cation language is limited to only one grammar formalism. This is not necessarily a drawback, as

such a specification language can be better tailored towards the peculiarities of the formalism. For exam-
ple, ALE Carpenter and Penn (1994) is a very powerful (type) specification language for the domain of
unification-based grammar formalisms. But apart from expressiveness of the specification language, the
ease with which the intended information about a language can be encoded is also important. An example
of a language that combines expressiveness with ease of use is the Core Language Engine Alshawi (1992).
Unfortunately the Core Language Engine (CLE) does not support typing. Within my thesis’ subject a type
specification language has been developed that can be positioned somewhere between ALE and CLE. This
specification language (calledTFS) can be used to specify a type lattice, a lexicon and a unification gram-
mar for a head-corner parser. The notation is loosely based on CLE, though far less extensive. For instance,
the usage of lambda calculus is not supported.

The specification is compiled in two steps. In the first step the specification is read and stored in a
symbol table. If no error has occured while reading the specification, the contents of the symbol table is
mapped to C++ code. During the first step also the type lattice and the transitive and reflexive closure of
the head-corner relation1 are determined Yellin (1988). In the second compilation step the C++ code is
compiled and then linked with grammar-independent code: code that implements the parsing algorithm and
code used for the user interface and the ‘linguistic workbench’ (see figure 3.1). The ‘linguistic workbench’
is an environment for the grammar writer to test the specification. This workbench is not yet implemented,
but in chapter 6 some suggestions are given what could be done with such a workbench. Note that since
TFS is a specification language, the generated C++ code contains only declarations, so no procedure calls
have to be executed at run-time to read or process the specification.

In the following sections the syntax and semantics ofTFS are treated as well as the most important
aspects of the compilation of the specification, such as the determination of the least upper bound relation.
A complete description of the syntax ofTFS can be found in appendix A.

1The head-corner relation is explained in section 5.2.

13

14 3. Specification

C++ code

specification of

types, lexicon

and grammar

�����
compiler

specification of
�����

C++ compiler

head-corner parser

for typed feature

structures

code for head-corner parser

user interface code

linguistic workbench

Figure 3.1:The TFS system.The design of the head-corner parser for typed feature structures.

3.1 Specification of Types

In TFS types are specified in a certain order. There are two factors that affect the order of the type specifica-
tion: (1) types can be used as supertypes in the specification of another type and (2) types should be specified
before they can be used. This means that first general types are specified, followed by more specific types.
A nice side-effect of specifying types this way is that no cyclic definitions (like ‘A is a B and B is an A’)
can be created. To keep track of the least upper bound relation a lower triangle matrix with the least upper
bound of every two types is updated after each addition of a type to the symbol table. The type lattice is
restricted to be afinite bounded complete partial orderCarpenter (1992). To keep the type lattice consistent
the following two conditions should hold for every triplet〈a,b,c〉 of types.

atb = b ∧ bt c = c ⇒ at c = c (3.1)

atb = a ∧ at c = a ⇒ bt cv a (3.2)

Before we treat an algorithm that ensures that these conditions hold after every type that is added, we will
give an example showing what the desired effect on the least upper bound matrix would be. The same lattice
as in chapter 2, page 5 is used. In figure 3.2 the least upper bound matrix is shown just before and after
the addition of typex. Initially, all the entries in the row for typex are made equal to>, except the entries
for its supertypes, which are made equal tox. For the computation of the new least upper bound matrix it
is not necessary to check all possible triplets〈a,b,c〉 of types to see if the lattice is still consistent. First of
all, only triplets containingx have to checked, assuming that the least upper bound matrix was consistent
before the addition of typex. Second, only those entries have to checked which are not equal to>. And
finally, it is not necessary to check triplets in which> and⊥ occur as arguments for thet operator. This
means that the first two columns of the least upper bound matrix are never inspected by the algorithm. We
can apply equation 3.1 onxt v andvt t, andxtu andut s. This results in new values forxt t andxt s,
respectively. The other encircled entries are found by applications of equation 3.2. In general, equation 3.1
can be applied to an entry in the last row not equal to> and suitable entries of the other rows. After no new
values can be generated with this rule, equation 3.2 should be applied to all pairs of entries in the last row
with values equal to the new type. The following algorithm shows how the new least upper bound can be
computed, given that the matrix is correct for the firstn−1 types and given the initial value for rown.

The implementation of rule 1 is quite straightforward:lub[n, i] andlub[i, j] correspond tobtc andatb
in equation 3.1, respectively. In the second part of the algorithm equation 3.2 is verified. We havelub[n, i]

3.1 Specification of Types 15

s

t
u
v
w

s t u v w

s s

t t
u u
v v
w w

u
v

w w

(a) Before the specification of typex.

s t u v w

s

t
u
v
w

s s

t t
u u
v v
w w

u
v

w w
x

x

xx x x x x

x x
x

x

(b) After the specification of typex.

Figure 3.2:Computation of the least upper bound matrix. The entries that follow from application of
equations 3.1 and 3.2 are accentuated with circles.

proc ComputeNewLub ()
lub[n,⊥] := n; (xt⊥= x)
lub[n,n] := n; (xt x = x)
for i := n−1 to 4 do

if (lub[n, i] = n) then
for j := i−1 to 3 do

if (lub[i, j] = i) then lub[n, j] := n fi (rule 1)
od

fi
od;
for i := 4 to n do

if (lub[n, i] = n) then
for j := 3 to i−1 do

if (lub[n, j] = n) ∧ (lub[i, j] =>) then lub[i, j] := n fi (rule 2)
od

fi
od

.

Figure 3.3:Algorithm to compute the new least upper bound matrix

corresponding toatb andlub[n, j] corresponding toatc (or vice versa). Note that we can only setlub[i, j]
to n if its value was equal to>. Otherwise the least upper bound ofi and j would already subsumen, since
n is the most specific type.

The computation of the new least upper bound matrix can be done in quadratic time. So, the computa-
tion of the least upper bound matrix starting from scratch can be done in cubic time.

A type specification consists of four parts: a type id for the type to be specified, a list of supertypes, a list of
constraints and a formula expressing the semantics for the new type. The following example shows how a
type lattice can be specified.

16 3. Specification

TYPE(performance; bottom; <constraints>; <QLF>)
TYPE(play; performance; <constraints>; <QLF>)
TYPE(concert; performance; <constraints>; <QLF>)
TYPE(musical; play, concert; <constraints>; <QLF>)
TYPE(ballet; concert; <constraints>; <QLF>)

performance

play

musical ballet

concert

For each type<constraints> should be replaced withPATR-II -like path equations. Path equations can
have the following two forms:

〈 f1 f2 . . . fn〉 = 〈g1 g2 . . .gn〉
〈 f1 f2 . . . fn〉 := node

The first form says that two paths (i.e., sequences of features) in a feature structure should be joined. With
the second form the type of a node in a feature structure can be specified. The right-hand side should be
equal to a type identifier or a constant (a string or a number). During the parsing of the specification a
minimal satisfying feature structure is constructed for each path equation. So all the nodes in a feature
structure have type⊥, unless specified otherwise. Subsequent path equations are unified to generate a new
feature structure satisfying both constraints. Finally the resulting feature structure for all the constraints is
unified with constraints inherited from the supertypes.

<QLF> should be replaced with the semantics in a quasi-logical formula. How semantics can be ex-
pressed using quasi-logical formulas is explained in chapter 4. The idea is that the constraints are only
necessaryduringparsing and the semantics are passed on to be usedafter parsing.

A type inherits information from its supertypes in the following way: the constraints for the type are
unified with the constraints of the supertypes, and the quasi-logical formula for the type isconcatenated
with a list of quasi-logical formulas for the supertypes. The QLF expressions are not evaluated, but are just
translated to internal representations.

3.2 Specification of Words

Lexical entries can be specified in the same way as types. This is not surprising, since words can also be
seen as types. There is, however, one restriction: a word cannot be used as supertype in the specification of
other types (including words). Ambiguous words can be specified by simply defining multiple entries for
the same lexeme:

LEX("flies", verb, <constraints>, <QLF>)
LEX("flies", noun, <constraints>, <QLF>)

The type identifier that is given to a word is the type identifier of the first type of the list of supertypes. In the
previous example the words only had one supertype, so there is a feature structure for “flies” with averb
type identifier and a feature structure with anoun type identifier. In the lexicon every word is associated
with a list of feature structures, one for each meaning.

After all the words have been read, the lexicon can be generated. The lexicon is organized as a binary
search tree, allowing fast access to each word. To be more precise, the search time for a word increases
logarithmically with the size of the lexicon.

3.3 Specification of Grammar Rules 17

3.3 Specification of Grammar Rules

Grammar rules are internally also represented as typed feature structures. They have a special rule type
identifier. It is not necessary to represent rules as feature structures, but such structures happen to be a very
practical representation mechanism for grammar rules. Hence, in the C++ implementation the classRule
(the class for grammar rules) is a derived class from the classFeatureStruc (the class for feature structures).

In general, a grammar rule specification looks like this:

RULE(s --> np *vp*,
<np agr> = <vp agr>,
<vp subject> = <np sem>,
<s sem> = <vp sem>)

<rule>

s

s np vp

np vp

sem
agr

agr
sem

sem

subject

The asterisks mark the head2 in the grammar rule. Next to the specification the resulting typed feature
structure is shown. Note that grammar symbols are in fact types.

Using a feature structure as the data structure for grammar rules brings along two problems, which
fortunately can be solved easily. The first problem is that with feature structures the order of features is
irrelevant (since the features form a set), but the order of grammar symbols in a rule is very important. This
problem can be solved by implementing the set of features as an ordered list, so that the original order of the
grammar symbols remains intact. In the current implementation the set of features is implemented as simple
as possible: it is just an (dynamically allocated) array. Another solution would be to number the features of
the root node of a rule. So, the feature structure for a ruleS→ NP VP would then have three features with
namesf0, f1 and f2. To the values for these features are the feature structures forS, NP andVP.

The second problem occurs with grammar rules were the same symbol occurs on the left-hand and right-
hand side, like inVP→ ∗VP ∗ PP. The twoVP’s have the same type symbol, but refer to different parts
of a sentence. If we use the same representation as in the previous example, two features could be created
with the same name, or—even worse—only one feature could be created for bothVP’s. This problem can
be solved by using indices:VP1→ ∗VP2∗ PP. TheTFS parser detects that indices are used (VP1 is not a
type name) and creates a feature structure with features vp1, vp2 and pp, respectively. The nodes attached
to these features have the correct types: vp, vp and np, respectively.

The next example shows how typing can make some grammar rules with only one symbol on the right-
hand side superfluous.

TYPE(perfphrase; nounphrase; ;)
RULE(nounphrase --> *perfphrase*;

<nounphrase kind> = <perfphrase kind>,
<nounphrase sem> = <perfphrase sem>;

)

Both the type and rule specify that a performance phrase is a kind of noun phrase. So with the type specifi-
cation the rule becomes superfluous.

3.4 Comparison of a Typed and Untyped Grammar

In this section the usage of the specification languageTFS is illustrated by means of a small grammar. The
differences between this specification and a specification that uses no typing will be explained.

2See also section 5.1.

18 3. Specification

With the small grammar shown below only the sentence “Jan lives in Amsterdam” can be parsed, due
to the small size of the lexicon. The full specification of the type lattice is not shown, but most of the type
specifications are straightforward: just likes is specified to be a subtype ofconstituent , np andvp are
specified as subtypes ofconstituent . For the complete specification, see appendix D.2.

// the type lattice:
// (most type specifications for linguistic entities are omitted)
TYPE(constituent;;

<agr> := agreementtype;)
TYPE(thirdsing;constituent;

<agr num> := singular,
<agr pers> := third;)

TYPE(s;constituent;;)
TYPE(person;noun;;

EXISTS Person (personname(Person,Name)))

// lexical entries:
LEX("Jan"; propernoun, person, thirdsing;

<unbound name> := "Jan";)
LEX("lives"; transitive, thirdsing;

<agr> := location;
livesin(Subject,Object))

LEX("in"; prep; <agr> := inlocation;)
LEX("Amsterdam"; propernoun, thirdsing;

<agr> := location;
EXISTS Location (locationname(Location,"Amsterdam")))

// grammar rules:
RULE(s --> np *vp*; // Jan lives in Amsterdam

<np agr> = <vp agr>,
<s agr> = <vp agr>,
<vp unbound subject> = <np qlf>,
<s qlf> = <vp qlf>)

RULE(vp --> *verb* pp; // lives in Amsterdam
<verb agr> = <pp agr>,
<vp agr> = <verb agr>,
<vp unbound subject> = <verb unbound subject>,
<vp unbound object> = <verb unbound object>,
<vp unbound object> = <pp qlf>,
<vp qlf> = <verb qlf>)

RULE(pp --> *prep* np; // in Amsterdam
<pp agr> = <prep agr>,
<pp agr> = <np agr>,
<pp qlf> = <np qlf>)

In this example we see how multiple inheritance can be used to give short specifications for words. The
word “Jan” can be characterized by giving it three supertypes. The only extra thing that has to be done is
instantiate the unbound variable in the QLF expression that is inherited from theperson type. See also

3.4 Comparison of a Typed and Untyped Grammar 19

section 4.2 for the implementation of unbound variables. As said before, in the case that a word has more
than one supertype, the word will get the type identifier of the first type. So, “Jan” is specified as a sort of
proper noun (which is a subtype of the noun type). In an untyped grammar all this information should be
written out, making the specification far less readable. But what is more important, is that this has to be
done for every word that has about the same properties as “Jan”. A lot of redundancy is introduced and it is
not unlikely (especially for larger grammars) that specifications for similar words are not always specified
in the same way.

The specification of grammar rules would not really be that different for the untyped case. Paths are
equated to check constraint and to pass on information to other constituents.

For small grammars the advantages of using typing count for little compared to the extra ‘overhead’ that
is introduced by the type lattice. In the example used above the type specification was as long as the lexicon
and grammar specification together. But for larger grammars typing can actually shorten the total length of
the specification.

20 3. Specification

Chapter 4

Expressing Semantics

The meaning of language utterances is most conveniently described in some kind of logical language1.
First order predicate calculus (FOPC) and lambda calculus are the most well-known logical systems.

Actual implementations of natural language systems are often built on top of a Prolog compiler or a Lisp
interpreter. As a result the notation for semantic expressions is often very Prolog- or Lisp-like. With the
TFS language we have tried to abstract from such implementation details and devise a language which is
as close as possible to a more conventional notation of logic. So, instead of the prefix/list notation, the infix
notation is used. The starting point of the quasi-logical language QLF is FOPC. Logical operators like the
quantors (∀,∃,∃!) and connectives (¬,∨,∧,⇒) are replaced by keywords (FORALL, EXISTS, EXISTS1
andNOT, OR, AND, IMPL, respectively).

4.1 Extensions

QLF is extended to make it more useful in the context of natural language interfaces. With natural language
interfaces a simple yes (‘true’) or no (‘false’) is often not the desired information. To say something about
the mood of an utterance four mood operators are introduced:

DECLARATIVE This is the mood of a normal sentence that is not a question or an command. Within a
natural language interface it is most likely used for an answer to an question.

WHQUESTIONThe mood used for questions starting with ‘Where. . . ’, ‘What. . . ’, ‘How. . . ’, etc.

YNQUESTIONThe mood used for questions that can be answered with ‘yes’ or ‘no’. In most cases, how-
ever, these questions should not be answered with just ‘yes’ or ‘no’. Often somewhat more coopera-
tion is desired from a natural language interface. Consider for instance the following question:

“Are there still tickets available for Herman Finkers’ performances?”

1Though it is questionable whether logic is as language independent as often is assumed and whether logic can describe the true
and complete meaning of an utterance.

21

22 4. Expressing Semantics

A simple question ‘yes’ would not suffice in such a case. Information should be given about dates,
time and price of available tickets.

IMPERATIVE This mood can be used for commands like

“Give me more information about this performance.”

These mood operators can only be used at the top level; they can not be nested in other formulas.
To say something about (the cardinality) of sets, two new operators are used:

SET Used as inSET X (p(X)) , meant to denote the set of entities that satisfy predicatep. This can be
used for phrases like “The sisters of Jan”. The corresponding QLF expression could then be:

SET Y (EXISTS X (name(X,"Jan") AND sister(Y,X)))

COUNTCan be used in the same way:COUNT X (p(X)) , which stands for the number of entities that
satisfy predicatep. So with theCOUNToperator the cardinality of sets can be denoted. Sentences like
“Does Jan have three sisters?” can then be written in QLF as:

YNQUESTION(COUNT Y (EXISTS X (name(X,"Jan") AND sister(Y,X))) = 3)

Note that I have used the ‘=’ symbol to test for equality of two terms. Other supported term relations
are:<,>,<=,>= and! =. The last one can be used to express inequality.

4.2 Scope of Variables

The scope of a variable that is bound by a quantor is limited to the formula between parentheses that follows
it. Note that QLF differs here slightly from FOPC. In FOPC it is not necessary to explicitly indicate the
scope of a bound variable. But in QLF the scope has to be indicated with parentheses. So the FOPC formula
∀xP(x)∧Q(x,y) should be written asFORALL X (p(X) AND q(X,Y)) . Note also that predicate names
are written in lowercase and variable names in uppercase.

The scope of an unbound variable is the entire formula in which it occurs. Unbound variables that occur
in QLF expressions of types can be bound in the specification of a subtype, a word or a grammar rule. The
following example illustrates this:

TYPE(person; ; ; EXISTS X (personname(X,Y)))
LEX("Jan"; person; <unbound y> := "Jan";)

The typed feature structure that is created as a result of the first line is shown in figure 4.1.

4.3 Future Extensions of QLF 23

person

exists

personname

concat

op2

op

Y X

op1op2

unbound

X

op1

Y

qlf

Figure 4.1:Unbound variables.Unbound variables are implemented in such a way that they can be bound
later.

4.3 Future Extensions of QLF

The syntax of QLF can easily be extended. If one wants to add another operator to QLF, the following things
have to be done:

• add a keyword to theTFS scanner (currently defined in the fileTFSScan.l),

• add a token and a production rule for this token to theTFS parser (currently defined in the file
TFSParse.y), and

• create a basic type for the new operator, which will give the operator a type identifier and a feature
for every argument of the operator. It is also possible to define the new operator as a subtype of other
basic types. The basic types are defined in the filesTFSBasicTypes.h andTFSBasicTypes.c .
Using the code for other basic types, it should not be too hard to define a new operator.

One possible extension of QLF could be the addition of the set membership relation. This might be
useful for sentences like “Is Marie one of the sisters of Jan?”. Yet another, more complex extension could be
the addition of some kind of lambda calculus. Most semantics oriented natural language systems nowadays
use lambda calculus Alshawi (1992); Groenink (1992).

24 4. Expressing Semantics

Chapter 5

The Parser

In this chapter the head-corner parsing algorithm will be discussed that is used to parse sentences. The
first two sections are based on the chapters 10 and 11 of Sikkel (1993). Parts of these chapters can also be

found in Sikkel and Op den Akker (1993). In section 5.3 an extension of the formalism with typed feature
structures is introduced. Finally, in section 5.4 the most important implementation aspects of the parser are
explained.

5.1 Context-Free Head Grammars

The general idea behind head-corner parsing is that the most important words and nonterminals should
be recognized first. For instance, if we recognize the main verb of the sentence first, we would already
know what the case (number and person) should be for the subject. Also information about whether there
could/should be an object can often be derived from the main verb.

With context-free head grammars it is possible to enforce derivations, where the most important (non)terminals
are derived first. Context-free head grammars can be formally defined as a 5-tuple〈N,Σ,P,S,h〉, where the
first four parts have the same meaning as in ordinary context-free grammars. The fifth part,h, is a function
that assigns a natural number to each production rule inP. Let p be an element ofP and let| p | denote the
length of the right-hand side ofp. Thenh is constrained to the following values:

• h(p) = 0 for | p |= 0,

• 1≤ h(p)≤| p | for | p |> 0.

The headof a production rulep is now defined as theh(p)-th symbol on the right-hand side; empty pro-
ductions have headε. Usually the functionh is only defined implicitly by underlining the head of each
production rule. So, if we take for example the grammar from chapter 1, the assignment of the heads might
be defined as:

S → NP VP,
VP → ∗v NP,
NP → ∗det ∗n.

25

26 5. The Parser

Given a certain grammar there are many different definitions ofh possible. The actual allocation of heads
is done by the grammar writer. The definition ofh could be motivated by linguistic theories or by the effect
on the efficiency of the parser.

With the functionh it is possible to define the head-corner relation>h onN× (N∪Σ∪{ε}):

A>h B if there is productionp = A→ α ∈ P with B the head ofp.
The transitive and reflexive closure of>h is denoted>∗h.

5.2 Head-Corner Parsing

A head-corner parser belongs to the class of chart parsers. The notion of a chart parser was introduced by
Kay (1980). Before the chart parsing algorithm is explained, some notational conventions will be given
that will be used throughout this chapter. We writeA,B, . . . for nonterminal symbols;a,b, . . . for terminal
symbols;X,Y, . . . for arbitrary symbols; andα,β, . . . for arbitrary strings of symbols. Positions in the string
a1 . . .an are denoted byi, j,k, . . . andl,r.

A parsing systemfor some grammarG and stringa1 . . .an is a tripleP = 〈I ,H,D〉, whereI is a set of
items,H an initial set of items (also calledhypotheses) andD a set of deduction steps. The deduction steps
can be used to derive new items from already known items. The hypotheses are defined as

H = {[a1,0,1], . . . , [an,n−1,n], [$,n,n+1]},

where $ is the end-of-sentence token. The deduction steps inD have the following form:

η1, . . . ,ηk ` ξ.

The itemsη1, . . . ,ηk are called the antecedents and are taken fromH ∪ I . The itemξ ∈ I is called the
consequent.

A chart parser uses two data structures to derive items: thechart and theagenda. If a sentence is to be
parsed by a chart parser, the parsers places the initial items on the chart and places a goal on the agenda.
The initial goal is the item that predicts a recognized sentence between positions 0 andn. A sentence is now
parsed in the following way: An item is taken from the agenda and moved to the chart. This item is now the
current item. The current item is combined with the other items on the chart to create new items. The new
items that do not already occur on the chart or agenda are then added to the agenda. This process continues
as long as the agenda is not empty. Figure 5.1 shows a general schema for a chart parser.

The head-corner parser that is described here corresponds to thesHC parsing schema as described in
chapter 11 of Sikkel (1993). This schema can parse sentences from arbitrary context-free head grammars in
cubic time.

A head-corner chart parser uses different kinds of items. They can be divided into the following cate-
gories:

[l,r,A] — predict items or goals These items indicate what kind of constituents is looked for at a certain
place in the sentence. An item[l,r,A] is recognized if constituentA must be looked for somewhere
between positionl andr.

[X, i, j] — CYK items These items are used to denote terminal items[a, i, j], in the case ofX being a ter-
minal, and they are used to denote that anarbitrary production rule with left-hand sideX has been
recognized between positionsi and j, in the case ofX being a nonterminal. The name ‘CYK’ refers to
the Cocke-Younger-Kasami parsing algorithm Nijholt (1990); Harrison (1978), where the same kind
of items are used.

5.2 Head-Corner Parsing 27

proc chartParser
create initialchart andagenda;
while agenda not is emptydo

delete (arbitrarily chosen)current item fromagenda;
foreach item that can be recognized bycurrent

in combination with other items onchart do
if item is neither onchart nor onagenda then

additem to agenda
fi

od
od

.

Figure 5.1:General schema for a chart parser

[B→ α•β• γ, i, j] — double dotted items For each such item that is recognized it holds thatβ⇒∗ ai+1 . . .a j.
We can now define the head-corner parsing schemaPsHC = 〈IsHC,H,DsHC〉. The set of itemsIsHC is

defined as

IPred = {[l,r,A] | A ∈ N ∧ 0≤ l ≤ r},
IHC(i) = {[B→ α•βX • γ, i, j] | B→ αβXγ ∈ P ∧ 0≤ i≤ j},
IHC(ii) = {[B→ α•Xβ• γ, i, j] | B→ αXβγ ∈ P ∧ 0≤ i≤ j},
IHC(iii) = {[B→••, j, j] | B→ ε ∈ P ∧ j ≥ 0},
ICYK = {[A, i, j] | A ∈ N ∧ 0≤ i≤ j},
IsHC = IPred ∪ IHC(i)∪ IHC(ii)∪ IHC(iii)∪ ICYK .

The hypotheses are defined as usual:

H = {[a1,0,1], . . . , [an,n−1,n], [$,n,n+1]}

Finally, the deduction steps ofPsHC are defined as

DInit = {[$,n,n+1] ` [i, j,S] | 0≤ i≤ j ≤ n},
DHC = {[i, j,A], [X, i, j] ` [B→ α•X •β, i, j] | A>∗h B},

DHC(ε) = {[j, j,A] ` [B→••, j, j] | A>∗h B},
DlPred = {[l,r,A], [B→ αC•β• γ,k,r] ` [i, j,C] | A>∗h B ∧ l ≤ i≤ j ≤ k},
DrPred = {[l,r,A], [B→•β•Cγ, l, i] ` [j,k,C] | A>∗h B ∧ i≤ j ≤ k ≤ r},

DpreCompl = {A→•β•, i, j] ` [A, i, j]},
DlCompl = {[i,k,A], [X, i, j], [B→ αX •β• γ, j,k] ` [B→ α•Xβ• γ, i,k] | A>∗h B},
DrCompl = {[i,k,A], [B→•β•Xγ, i, j], [X, j,k] ` [B→•βX • γ, i,k] | A>∗h B},
DsHC = DInit ∪DHC∪DHC(ε)∪DlPred ∪DrPred ∪DpreCompl ∪DlCompl ∪DrCompl .

The antecedent inDInit is often omitted, as well as the terminal item[$,n,n+ 1]. In that case the items
[i, j,S],0≤ i≤ j ≤ n are just initial agenda items.

With the deduction stepDHC new head-corner items can be created. It says that if a nonterminalA is
predicted between positioni and j, and anX has already been recognized betweeni and j, then all double

28 5. The Parser

S

VP

NPNP

*det *n*v*n*det

1

2

34

5

6

7

89

10

Figure 5.2:A head-corner tree walk

dotted items can be created that use a production ruleB→αXβ such thatA>∗h B. SinceX is the only symbol
between the two dots it must necessarily be the head of the production rule. The deduction stepDHC(ε) can
be seen as a special case ofDHC, whereX is equal toε.

The meaning of the predict deduction steps is rather straightforward; for every double dotted item we
predict a predict item with the nonterminal that occurs just outside the double dots. The positions of the
double dotted items and other predict items put constraints on the positions of the new predict items.

Finally, we have the complete deduction steps. The pre-complete deduction step just turns every com-
pletely recognized right-hand side of a production rule into a CYK item with the left-hand side of that rule
as nonterminal. The other two complete deduction steps say that we can ‘lift the dot’ over nonterminalX, if
we have recognizedX at the right positions.

With the parsing systemPsHC it is now possible to parse sentences, given a context-free head grammar.
We take the grammar from section 5.1 and use the sentence “The man bites a dog” again as an example.
The derivation tree is (of course) the same as in figure 1.2, but the order in which the (non)terminals are
recognized is now less free. As a matter of fact, the order in which items are recognized with this grammar
is fixed. This is, however, not necessarily so. If we would have production rules with more than two symbols
on the right-hand side, there would also be more orders to create items. In figure 5.2 thehead-corner tree
walk is given. (The terminals are not shown in this figure.) This tree shows the order in which items are
recognized. The arrows upwards are due to applications ofcompleteor head-cornerdeduction steps, the
arrows downwards are due to applications of thepredict deduction steps. In table 5.1 the chart is shown
after the sentence has been parsed.

5.3 HC Parsing using Typed Feature Structures

In this section the head-corner parsing system is applied to typed feature structures. This will result in some
extra constraints on the items and deduction steps. Before we can introduce the new parsing scheme that
incorporates these constraints, we have to define yet some other notational conventions. As was already
mentioned in section 3.3, every context-free grammar rule has a typed feature structure associated with it1.
The minimal (with respect to information content) typed feature structure for a grammar rulep=A→α ∈ P
that satisfies all the specified constraints will be denoted byϕ0(p). The notationϕ0(X) = ϕ0(p) |X will be
used to denote the feature structure associated with symbolX, whereX is a symbol fromAα. Furthermore,

1Rules could also be considered to be a special class of typed feature structures. The difference, however, would be purely
notational and not very relevant.

5.3 HC Parsing using Typed Feature Structures 29

item recognized by
(i) [∗det,0,1] initial chart

(ii) [∗n,1,2] initial chart
(iii) [∗v,2,3] initial chart
(iv) [∗det,3,4] initial chart
(v) [∗n,4,5] initial chart
(0) [i, j,S],0≤ i≤ j ≤ n initial agenda
(1) [VP→•∗v•NP,2,3] head-corner (0,iii)
(2) [3,5,NP] right predict (0,1)
(3) [NP→ ∗det • ∗n•,4,5] head-corner (2,v)
(4) [NP→•∗det ∗n•,3,5] left complete (0,iv,3)

(4a) [NP,3,5] pre-complete (4)
(5) [VP→•∗v NP•,2,5] right complete (0,1,4a)

(5a) [VP,2,5] pre-complete (5)
(6) [S→ NP •VP•,2,5] head-corner (0,5a)
(7) [0,2,NP] left predict (0,6)
(8) [NP→ ∗det • ∗n•,1,2] head-corner (7,ii)
(9) [NP→•∗det ∗n•,0,2] left complete (7,i,8)

(9a) [NP,0,2] pre-complete (9)
(10) [S→•NP VP•,0,5] left complete (0,9a,6)

(10a) [S,0,5] pre-complete (10)

Table 5.1:A completed HC chart

we will add indicesξ, η andζ as subscripts to items. By writing[B→ α • βX • γ, i, j]ξ we indicate that
whereverξ is written elsewhere in the same formula, this is an abbreviation for[B→ α•βX •γ, i, j]. Finally,
we will write ϕ0(ξ) for the typed feature structure that is initially associated with an item.

During the parsing process information will percolate from the terminal items to the item for a recog-
nized start symbol of the grammar. For every item the initial feature structure needs to be specified. The way
the information from these feature structures is passed on during parsing is defined in the deduction steps.
The information content of initial feature structures will then increase. For these new feature structures we
will use the notationϕ(ξ).

We can now define the parsing systemPsHC(TFS) = 〈IsHC(TFS),H,DsHC(TFS)〉, which describes a head-
corner parser for typed feature structures.

IPred = {[l,r,A]ξ | A ∈ N ∧ 0≤ l ≤ r ∧ ϕ0(ξ) = ϕ0(A)},

IHC(i) = {[B→ α•βX • γ, i, j]ξ | B→ αβXγ ∈ P ∧ 0≤ i≤ j ∧
ϕ0(ξ) = ϕ0(B→ αβXγ)},

IHC(ii) = {[B→ α•Xβ• γ, i, j]ξ | B→ αXβγ ∈ P ∧ 0≤ i≤ j ∧
ϕ0(ξ) = ϕ0(B→ αXβγ)},

IHC(iii) = {[B→••, j, j]ξ | B→ ε ∈ P ∧ j ≥ 0 ∧ ϕ0(ξ) = ϕ0(B→ ε)},
ICYK = {[A, i, j]ξ | A ∈ N ∧ 0≤ i≤ j ∧ ϕ0(ξ) =⊥},

IsHC(TFS) = IPred ∪ IHC(i)∪ IHC(ii)∪ IHC(iii)∪ ICYK ,

30 5. The Parser

H = {[a, i−1, i]ξ | ϕ0(ξ) = ϕ0(a) ∧ 1≤ i≤ n} ∪
{[$,n,n+1]η | ϕ0(η) =⊥}

DInit = {[$,n,n+1]ξ ` [i, j,S] | 0≤ i≤ j ≤ n},
DHC = {[i, j,A], [X, i, j]η ` [B→ α•X •β, i, j]ξ | A>∗h B ∧

ϕ(Xξ) = ϕ0(Xξ)tϕ(η)},

DHC(ε) = {[j, j,A] ` [B→••, j, j] | A>∗h B},
DlPred = {[l,r,A], [B→ αC•β• γ,k,r]η ` [i, j,C]ξ | A>∗h B ∧ l ≤ i≤ j ≤ k ∧

ϕ(Cξ) = ϕ0(Cξ)tϕ(Cη)},
DrPred = {[l,r,A], [B→•β•Cγ, l, i]η ` [j,k,C]ξ | A>∗h B ∧ i≤ j ≤ k ≤ r ∧

ϕ(Cξ) = ϕ0(Cξ)tϕ(Cη)},
DpreCompl = {A→•β•, i, j]η ` [A, i, j]ξ | ϕ(ξ) = ϕ(η)},
DlCompl = {[i,k,A], [X, i, j]η, [B→ αX •β• γ, j,k]ζ ` [B→ α•Xβ• γ, i,k]ξ

| A>∗h B ∧ ϕ(ξ) = ϕ(ζ) ∧ ϕ(Xξ) = ϕ0(Xξ)tϕ(η)},
DrCompl = {[i,k,A], [B→•β•Xγ, i, j]ζ, [X, j,k]η ` [B→•βX • γ, i,k]ξ

| A>∗h B ∧ ϕ(ξ) = ϕ(ζ) ∧ ϕ(Xξ) = ϕ0(Xξ)tϕ(η)},

DsHC(TFS) = DInit ∪DHC∪DHC(ε)∪DlPred ∪DrPred ∪DpreCompl ∪DlCompl ∪DrCompl .
The hypotheses are defined different than usual. The setH should be seen as a multi-set; there can be

multiple occurences of[a, i− 1, i], if a is ambiguous. For each occurence a different feature structure is
associated with it.

The assignment of initial feature structures to the items is rather straightforward, except maybe the
assigment of⊥ to CYK items. This is because of the deduction step that creates CYK items;preComplete
does not need an initial feature structure for a CYK item. So, in factany typed feature structure could be
specified as initial feature structure for CYK items, since they are not used anyway.

The constraintϕ(ξ) = ϕ(ζ) ∧ ϕ(Xξ) = ϕ0(Xξ)tϕ(η) for the left- and right-complete deduction steps
should be interpreted as: the feature structureϕ(ξ) for the new head-corner item is the same as the feature
structureϕ(ζ) for the old head-corner item, except that any information aboutX in ϕ(ξ) is extended with
the information ofϕ(η).

Note that, unlike the parsing systemPpHC(UG) for untyped unification grammars as defined on pages 266–
267 of Sikkel (1993), no extra constraints on features are required for the feature structures associated with
the items. In our case these constraints are unnecessary, since the typing already restricts the feature struc-
tures to valid values.

5.4 Implementation

The implementation of the head-corner parser is at this moment heavily under construction. But given the
source code for the head-corner parser of Veldhuijzen van Zanten (1994), the implementation should not be
too hard. Due to time constraints and lack of documentation for the implementation of that parser it has not
been possible to complete theTFS system with a working HC parser. We are now in the debugging phase
of the development process (see also appendix C.3). Fortunately, most code for the HC parser is shared with
theTFS compiler (see figure 5.3), and theTFS compiler already works.

5.4 Implementation 31

C++ code

specification of

types, lexicon

and grammar

�����
compiler

specification of
�����

C++ compiler

head-corner parser

for typed feature

structures

code for head-corner parser

user interface code

linguistic workbench

Figure 5.3:The TFS system.The design of the head-corner parser for typed feature structures.

If the HC parser is finished, it should be possible to use the parser in ‘batch-mode’. That is, a file with a
number of sentences is given to the parser, and the parser prints the chart after each parsed sentence. If any
debugging options have been specified (see appendix C), some additional information can be obtained. In
the near future theTFS system could then be extended with a more interactive window based environment.
Ideally, theTFS system would also have a testing environment with which (certain aspects of) a grammar
can be tested. This is called the ‘linguistic workbench’ in figure 5.3.

The implementation has been made in the object-oriented language C++. This language is often used
in the development of commercial applications because of its support of a high level of abstraction on the
one hand and the abilities to still use low-level constructs on the other hand. Programming in C++ could be
done in an imperative style, but then there would be no advantage in using C++ over using Modula-2 (which
was used for the predecessors of theTFS parser). I thought that the object-oriented design methodology
Bergin (1994) might be very useful to keep a system as large asTFS manageable and maintainable. Other
considerations that played a role in the choice for C++ were:

• C++ can easily be interfaced with a automatic lexical analysis generator program and a compiler-
compiler (see appendix C.2), and

• it would give me the chance to learn a new design methodology and programming language.

In figure 5.4 the defined classes and the relations between them are shown. A class in C++ stands for
a collection of similar objects. Each objects contains some data and a number of methods that can access
and modify these data. The set of data and methods are called the members of an object. Objects can
communicate with other objects by sending messages through the methods of these objects. Methods and
messages correspond to procedures and arguments in a imperative programming language. It is considered
to be bad design, if an object directly modifies the data of another object. Usually a distinction is made
between methods that are used for internal use only (‘private methods’) and methods that can be used by
any object (‘public methods’). A short overview of other object-oriented concepts is given in appendix B.
In this appendix there is also a detailed description of the most important methods of each class. In the rest
of this section we will focus on the overall structure of the classes and the working of the program.

The solid arrows in figure 5.4 stand for the part-of relation. SoParser−→ Chart means that aParser
object has aChart object as one of its members. In addition to theChart, theParser also has anAgenda, a
Scanner and aGrammar. Both theChart and theAgenda can be seen as a list of items. In the case of the
Agenda, this is expressed with the inheritance relation. The only thing in which theAgenda differs from

32 5. The Parser

Parser Chart

ChartIterator

Agenda

HeadCornerItem CompleteItem PredictItem

SymbolTable

ItemIterator

ItemList

ItemNode

Item

RuleEntry TypeEntry WordEntry VarEntry

Entry

GrammarScanner

Word Rule

FeatureStrucFeaturestrucList

TypeList Type

n

n

2

2

RuleIteratorLexicon

2

n

n

n

2

Figure 5.4:The classes used in theTFS parser. Solid arrows mean that a class has an object of another
class as member. If a class has more than one object of the other class as members, then the number of
objects is indicated by the label on the edge of the arrow. Dashed arrows express an inheritance relation
between two classes.

an ordinaryItemList is in the way anAgenda is printed. The implementation of theAgenda does not need
to be very complicated. Any structure that allows a simple storage and retrieval of items would do. The
ItemList is organized as a queue; items are put on one end of the list and removed from the other end. The
Chart is organized in a more structured way. TheChart is implemented as a matrix of item lists. Every entry
ei, j in the matrix is a list of items that have position markersi and j. Since0≤ i≤ j ≤ n the matrix is in fact
an upper-triangular matrix. This kind of structure allows fast searching in the chart, if the position markers
of the item that is searched for are already known.

An ItemList consists of a linked list ofItemNodes, which function as a sort of ‘wrappers’ forItem
objects. In theory it is possible that an object belongs to theItem class, but does not belong to one the
subclassesHeadCornerItem, CompleteItem or PredictItem. In practice items should always be of a certain
kind; the parser cannot do anything with items of an unknown kind. The actual parsing is done by the items
themselves. Every kind of item is equipped with a method for every deduction step, in which it occurs
as antecedent. Each such method looks for the other antecedents on the chart and if they are found, the

5.4 Implementation 33

consequent is created.
TheParser creates the initial items (the hypotheses) by making subsequent calls to thenextItem method

of theScanner object. TheScanner returns one item at a time until the end of the sentence is reached. Before
it can return an item, it reads a word from the input and looks it up in theLexicon. If the word occurs in the
Lexicon, it returns a list of feature structures, one feature structure for each meaning of the word. Note that
theParser does not have to concern itself with ambiguous words; these are handled by theScanner and the
Lexicon. Items for ambiguous and consecutive words are handled in the same way by theParser.

TheLexicon is implemented as a binary search tree ofWords Aho et al. (1983). Every node in the
tree contains aWord. In the tree attached to the left branch of a word, only words occur with a smaller
lexicographical value. Likewise, in the tree at the right branch only words occur with a larger lexicographical
value. AWord consists of a lexeme and a list of feature structures for every meaning of the word.

The Grammar class is nothing more than an array of grammar rules and a number of methods that
use these rules. TheRule class is a subclass of theFeatureStruc class. In addition to the members of the
FeatureStruc class it has a data member that indicates the head of the rule and methods for selecting (the
feature structure assocociated with) a symbol in the rule.

The most important members of theFeatureStruc class were already described in section 2.3. There are
a number of other methods that can inspect or modify a feature structure. There are, of course, methods that
assign or retrieve a feature value given a certain feature name. Also, a variant of theunify method, called
build, has been defined to create feature structures from aTFS specification. It differs fromunify in the
way that type checking is done; in this respectbuild is more ‘tolerant’. This method is necessary because
the least upper bound of two types cannot be computed, if that least upper bound is just being defined.

The information about all types is stored in aTypeList object. Every feature structure shares the same
TypeList to enforce that only oneTypeList is used. ATypeList consists of an array (during the parsing
of sentences) or linked list (during the parsing of aTFS specification) ofTypes. EachType contains a
typed feature structure and a row of the least upper bound matrix. So, if theleastUpperBound method of
theTypeList is called, that method will first select the type with the largest type identifier2. Then the right
element in the row of the least upper bound matrix can be returned using the data of that type.

Finally, we have a number of classes that are used only during the parsing of aTFS specification. The
most important one is theSymbolTable class. It contains many methods to facilitate the specification of
semantic actions for theTFS grammar3. During the parsing of a specification all information about types,
words, grammar rules and variables is stored in a so-called hash table Aho et al. (1983). A hash table is
an array of entry lists. An entry is an object that contains the feature structure of a certain type, word, rule
of variable and the name that is associated with it. The position of an entry in the symbol is determined
by a hash function. The hash function maps a string of characters (the name of an entry) to an integer (the
index in the array). Properties of a good hash function are (1) that every index in the array is approximately
equally likely to be the index for a certain unknown string and (2) that similar strings are mapped to different
indices. More about symbol tables, hash functions and other compiler construction topics can be found in
Aho et al. (1986).

2Type identifiers are actually just integers.
3The grammar forTFS itself, that is, not a grammar specified withTFS .

34 5. The Parser

Chapter 6

Discussion

6.1 Unification Revisited

There has been a lot of research on unification. This research can be roughly divided into two kinds: (1)
research on more efficient implementations of unification and (2) research on how unification can be applied
to non-standard feature structures. The unification algorithm presented in this report could be classified as
belonging to both kinds, since it uses a new method to share substructures and it is applicable to typed
feature structures.

6.1.1 Other Efficient Unification Algorithms

Unification algorithms can be divided into three classes: destructive, non-destructive and quasi-destructive
algorithms. With destructive unification the operands are (partially) destroyed after unification. If that is
not desired, a copy has to be made of every feature structure that is going to be used as an operand for
unification. Since copying takes up most of the time of unification, we can ignore the class of destructive
unification algorithms, if we are looking for the most efficient algorithm.

Non-destructive unification, on the other hand, leaves the operands intact; feature structures are exactly
the same before and after being used as an operand. Quasi-destructive unification is a variation on this.
It leaves the feature structures intact on the outside, but it changes some administrative properties of the
operands. There are three principles for efficient unification Tomabechi (1992):

• copying should be performed only for successful unifications,

• unification failures should be found as soon as possible,

• unmodified subgraphs can be shared.

The unification algorithm as it was designed by Velduijzen van Zanten, was based on an older unification
algorithm of Tomabechi (1991) (which was in turn based on an algorithm by Wroblewski (1987)), where

35

36 6. Discussion

no structures where shared1. It appears that Tomabechi’s structure-sharing unification algorithm is more or
less equivalent to Veldhuijzen van Zanten’s algorithm. That is, the implementation is somewhat different,
but the effect on the efficiency is the same.

We see a similar situation for unification algorithms for typed feature structures. Kogure (1994) adapted
Tomabechi’s algorithm for typed feature structures and I adapted Veldhuijzen van Zanten’s algorithm.
Again, the net effect seems to be the same (although Kogure claims to have improved the structure-sharing
part of Tomabechi’s algorithm). It would be interesting to see how all these algorithms relate. It is, however,
very difficult to make a quantative comparison between unification algorithms for typed and untyped feature
structures; one has to write a grammar that is unbiased with respect to typing.

6.1.2 Extensions to the Notion of Unification

In the previous subsection the notion of unification was already extended to the domain oftyped feature
structures, but there also some other possible extensions. One way to make extensions is to take the logical
approach. In the past feature structures have been formalized with an attribute-value logic Johnson (1988)
or with so-calledψ-terms Äıt-Kaci (1984). Based on such a logical backbone, feature structures can be ex-
tended with, for instance, disjunction and negation Hegner (1991); Eisele and Dörre (1988); Kasper (1987).
To be more precise, these logical operators can be applied to the feature values of a feature structure. Many
such extensions exist, complete with proofs of soundness and completeness, but often animplementationof
an efficient unification algrithm is not given.

A more linguistic approach is taken by Bouma (1993). He introduces the so-calleddefault unification,
which can be used to overrule the feature values of one feature structure by another one. The following
example illustrates how this can be done (‘t!’ is used as the default unification operator).

f

a

t! f g

b b

= f g

b b (6.1)

The left feature structure is called the default argument, the right one the non-default argument. The concept
of overruling can also be applied to type inheritance. This is particularly useful, if one wants to describe
conjugations with types.

6.2 Future Work

As usual there is always some work left to do. In retrospect I think that my plans were maybe a bit too
ambitious, in the sense that they never could have been carried out within seven months by one person. In
the next paragraphs the things that still need to be done are listed as well as some other extensions.

The implementation of the head-corner parser still needs some work. As was already said in section 5.4,
most of the implementation is now finished, but the translation of Veldhuijzen van Zanten’s chart parser in
Modula-2 to C++ is still in progress. If this phase has been finished, theTFS system is able to parse files
containing sentences and produce the corresponding charts.

Ideally, a grammar writer would have somewhat more flexibility. For instance, it would be nice if
nonterminals could be used in a sentence and could be specified as the initial goal. In this way the grammar
writer could test only those parts of the grammar she is interested in. The usage of nonterminals in sentences

1Tomabechi makes a difference betweenfeature-structuresharing (denoting coreferences) anddata-structuresharing (where
two distinct feature structures share a substructure). In this report structure sharing is always used for the second kind of sharing.

6.2 Future Work 37

is not that difficult to implement. To recognize nonterminals as such they need to be preceded by an ‘escape-
symbol’ (like ‘\’ or any other symbol that is not used in the sentences) and followed by position markers2.
Furthermore, there has to be a method that looks up a type given its name, and a method that creates initial
items based on the type and the position markers. These methods could then also be used to create abitrary
initial agenda items, if the grammar writer can specify in some way the name of the nonterminal that is to
be set as goal. All this is part of what was previously called the linguistic workbench.

An extension that would turn theTFS system into a real application would be a graphical user interface.
With such an interface it should be possible to use theTFS system interactively. That is, the grammar writer
types in a sentence and the sentence gets parsed. Any additional information during and after parsing should
be available (in other windows). A few examples of what kind of information might be shown in these
windows are: a list of deduction steps that have been taken so far, a display of the current agenda and chart
and a (graphical) display of the parse tree/forest for a sentence. It would also be nice if the grammar writer
could edit the specifications of the types, lexicon and grammar without leaving the application.

Also from a theoretical point of view there are some extensions possible. One very valuable extension
would be some kind of rating mechanism for recognized items. The ‘score’ for every item can be used in
the following ways:

• in case of ambiguities the item with the highest score can be taken as the correct one,

• the chart and the agenda can be pruned during the parsing process by removing the items with a score
smaller than a certain lower bound.

For such a rating mechanism it is necessary to assign an initial score to every word, type and item kind.
Furthermore, functions have to be designed that compute a new score based on a number of other scores.
These functions can then be used to compute the score for the left-hand side of a grammar rule, given the
scores for the symbols on the right-hand side. Likewise, the score for the consequent of an item deduction
step can be computed, when the scores for the antecedents are known. Possibly, initial scores can be given
to rules and deduction steps as well. For this scoring mechanism to be effective it is necessary to have a
sufficiently large (tagged) corpus.

2If the position markers are not given, an infinite number of initial items is created.

38 6. Discussion

Chapter 7

Conclusions

A fter the design and implementation of theTFS system I have come to the following conclusions:

• Typing and typed feature structures in particular are useful for a natural language system. Not only
hierarchies of linguistic entities can be described effectively, but also properties of domain entities
and relations between them can be modeled with typed feature structures.

• Both with untyped and typed feature structures it is possible to create relations between feature struc-
tures based on the subsumption relation, but only in the case of typed feature structures a grammar
writer can take full advantage of that. This is caused by the fact that typed feature structures can be
refered to, that is, the root node of each typed feature structure has a name.

• The unification algorithm of Veldhuijzen van Zanten can succesfully be applied to typed feature struc-
tures with only a few modifications. It is likely that the extra type-checking overhead is neglible
compared to the increase in performance, if a suitable lattice has been defined.

• The computation of the least upper bound relation for a set of types can be done in cubic time by an
algorithm that incrementally builds a matrix encoding for this relation.

• The detachment of the specification language from the internal representation leads to more readable
(and writable) specifications. Especially writing semantic expressions can be done easier in a quasi-
logical language than in aPATR-II -like language.

• With a typed specification language (likeTFS) redundancies are greatly reduced, as well as the
chances of inconsistencies to occur. Also, by the use of inheritance specifications tend to get shorter,
an advantage that will become more apparent for larger grammars.

• The head-corner parsing systemPsHC Sikkel (1993) can also be applied to typed feature structures.
This results in a similar system, where feature structures are associated with items and constraints are
put on them.

• The object-oriented design methodology has proven to be very useful for a programming-in-the-large
project. More than with traditional imperative programming languages one is forced to think about

39

40 7. Conclusions

a good partitioning of the problem into subproblems, and—maybe even more important—about a
‘clean’ interface between the subproblems. By ‘clean’ I mean that different classes do not interfere
with each other.

References

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1983).Data structures and algorithms. Addison-Wesley,
Reading, MA.

Aho, A. V., Sethi, R., and Ullman, J. D. (1986).Compilers: Principles, Techniques and Tools. Addison-
Wesley, Reading, MA.

Aı̈t-Kaci, H. (1984).A Lattice-Theoretic Approach to Computation Based on a Calculus of Partially Ordered
Types. PhD thesis, University of Pennsylvania.

Alshawi, H., editor (1992).The Core Language Engine. The MIT Press, Cambridge, MA.

Bergin, J. (1994).Data Abstraction: the Object-Oriented Approach using C++. McGraw-Hill, New York.

Bouma, G. (1993).Nonmonotonicity and Categorial Unification Grammar. PhD thesis, Rijksuniversiteit
Groningen.

Carpenter, B. (1992).The Logic of Typed Feature Sructures. Cambridge University Press.

Carpenter, B. and Penn, G. (1994). Ale 2.0 user’s guide. Technical report, Carnegie Mellon University
Laboratory for Computational Linguistics, Pittsburgh, PA.

Carroll, L. (1871).Through the Looking-Glass, and What Alice Found There. Macmillan.

Carroll, L. (1960).The Annotated Alice. Clarkson N. Potter. Alice’s Adventures in Wonderland & Through
the Looking-Glass, Edited by Martin Gardner.

Eisele, A. and D̈orre, J. (1988). Unification of disjunctive feature descriptions. InProceedings of the 26th
Annual Meeting of the ACL, Buffalo.

Groenink, A. V. (1992). Een semantische interpretator voor een prototype natuurlijke-taalinterface. Techni-
cal Report TI-SV-92-1845, PTT Research, Leidschendam, The Netherlands. In Dutch.

Grosz, B., Jones, K. S., and Webber, B., editors (1982).Readings in Natural Language Processing. Morgan
Kaufmann, Los Altos, CA.

Harrison, M. A. (1978).Introduction to Formal Language Theory. Addison-Wesley, Reading, MA.

41

42 References

Hegner, S. J. (1991). Horn extended feature structures: Fast unification with negation and limited dis-
junction. InFifth European Chapter of the Association for Computational Linguistics (EACL’91), pages
33–38, Berlin.

Hoeven, G. F. v. d., Andernach, J. A., Van de Burgt, S. P., Kruijff, G.-J. M., Nijholt, A., Schaake, J., and
De Jong, F. (1995). Schisma: A natural language accessible theatre information and booking system.
In Proceedings of the First International Workshop on Applications of Natural Language to Data Bases,
Versailles, France.

Johnson, M. (1988).Attribute-Value Logic and the Theory of Grammar. CSLI Lecture Notes Series. Uni-
versity of Chicago Press.

Kasper, R. T. (1987). A unification method for disjunctive feature descriptions. InProceedings of the 25th
Annual Meeting of the ACL.

Kay, M. (1980). Algorithm schemata and data structures in syntactic processing. Report CSL-80-12, Xerox
Parc, Palo Alto, CA. Reprinted in Grosz et al. (1982).

Kogure, K. (1994). Structure sharing problem and its solution in graph unification. InProceedings of the
15th International Conference on Computational Linguistics, pages 886–892.

Nijholt, A. (1990). The CYK-approach to serial and parallel parsing. Memorandum Informatica 90-13,
University of Twente, Department of Computer Science.

Rounds, W. C. and Kasper, R. T. (1986). A complete logical calculus for record structures representing lin-
guistic information. InProceedings of the 15th Annual IEEE Symposium on Logic in Computer Science,
pages 39–43, Cambridge, MA.

Shieber, S. M. (1986).An Introduction to Unification-Based Approaches to Grammar. Center for the Study
of Language and Information, Stanford University, Stanford, CA.

Sikkel, K. (1993).Parsing Schemata. PhD thesis, Department of Computer Science, University of Twente,
Enschede, The Netherlands.

Sikkel, K. and Op den Akker, R. (1993). Predictive head-corner chart parsing. InInternational Workshop
on Parsin Technologies, pages 267–275, Tilburg (The Netherlands), Durbuy (Belgium).

Sowa, J. F. (1984).Conceptual Structures. Addison-Wesley, Reading, MA.

Stroustrup, B. (1991).The C++ Programming Language. Addison-Wesley, Reading, MA, second edition.

Sudkamp, T. A. (1988).Languages and Machines. Addison-Wesley, Reading, MA.

Tomabechi, H. (1991). Quasi-destructive graph unification. InProceedings of the 29th Annual Meeting of
the ACL, Berkeley, CA.

Tomabechi, H. (1992). Quasi-destructive graph unification with structure-sharing. InProceedings of the
14th International Conference on Computational Linguistics, pages 440–446.

Veldhuijzen van Zanten, G. and Op den Akker, R. (1994). Developing natural language interfaces: a test
case. In Boves, L. and Nijholt, A., editors,Twente Workshop on Language Technology 8, pages 121–135,
Enschede, The Netherlands.

References 43

Verlinden, M. (1993). Ontwerp en implementatie van een head-corner ontleder voor grammatica’s met
feature structures. Master’s thesis, Department of Computer Science, University of Twente, Enschede,
The Netherlands. In Dutch.

Wroblewski, D. (1987). Nondestructive graph unification. InProceedings of the Sixth National Conference
on Artificial Intelligence.

Yellin, D. (1988). A dynamic transitive closure algorithm. Research Report RC 13535, IBM Research
Division, T.J. Watson Research Center, Yorktown Heights, NY.

44 References

Appendix A

The syntax of TFS

In this appendix the syntax of the specification languageTFS is given. Words in typewriter capitals as
well as text between single quotes are tokens returned by the scanner. Most tokens are identical to the

keywords used in a specification. There are two exceptions: the tokensID and VARIABLE should be
replaced by any valid identifier and variable representation. Italic words stand for nonterminals.

grammar ::= types lexicon rules

types ::= type
| types type

type ::= TYPE’(’ typeid’;’ typeidlist’;’ patheqlist’;’ qlfexpr ’)’

typeidlist ::= ε
| nonemptytypeidlist

nonemptytypeidlist ::= typeid
| nonemptytypeidlist’,’ typeid

typeid ::= ID

lexicon ::= word
| lexicon word

word ::= LEX ’(’ lexeme’;’ typeidlist’;’ patheqlist’;’ qlfexpr ’)’

lexeme ::= STRING

patheqlist ::= ε
| nonemptypatheqlist

45

46 A. The syntax ofTFS

nonemptypatheqlist ::= pathequation
| nonemptypatheqlist’,’ pathequation

pathequation ::= ’<’ path ’>’ ’ =’ ’<’ path ’>’
| ’<’ path ’>’ ’ :=’ node

path ::= edge
| path edge

node ::= typeid
| constant

edge ::= featureid

featureid ::= ID

rules ::= rule
| rules rule

rule ::= RULE’(’ cfgrule ’;’ patheqlist’)’

cfgrule ::= symbol’−−>’ symbollist head symbollist

symbollist ::= ε
| symbollist symbol

head ::= ’*’ symbolornot’*’

symbolornot ::= ε
| symbol

symbol ::= typeid index

index ::= ε
| NUMBER

qlfexpr ::= ε
| moodop’(’ formula ’)’
| formula

moodop ::= DECLARATIVE
| WHQUESTION
| YNQUESTION
| IMPERATIVE

formula ::= qlfbool

47

| qlfterm
| qlfset

qlfbool ::= ’(’ qlfbool ’)’
| NOTqlfbool
| qlfboolANDqlfbool
| qlfboolORqlfbool
| qlfbool IMPL qlfbool
| qlfboolquantVARIABLE ’(’ qlfbool ’)’
| predicate’(’ qlftermlist ’)’
| qlfterm qlftermrel qlfterm

qlfboolquant ::= FORALL
| EXISTS
| EXISTS1

predicate ::= ID

qlftermlist ::= qlfterm
| qlftermlist ’,’ qlfterm

qlfterm ::= VARIABLE
| constant
| qlfcard

qlftermrel ::= ’<’ | ’>’ | ’=’ | ’ 6=’ | ’≤’ | ’≥’

constant ::= STRING
| NUMBER

qlfset ::= SET VARIABLE’(’ qlfbool ’)’

qlfcard ::= COUNT VARIABLE’(’ qlfbool ’)’

48 A. The syntax ofTFS

Appendix B

Description of Classes and Methods

This appendix is intended as a reference manual for someone who wants to modify or expand theTFS
parser. But it might also be of interest for those who want to know more about how some structures like

the lexicon are implemented and how they can be accessed. In this chapter the methods of the classes as
shown in figure B.1 are described in detail. That is, for every class the most important methods, the required
arguments for that method and the net effect on an object are given. The source code is available via anony-
mous ftp at
ftp.cs.utwente.nl/pub/doc/Parlevink/MasterThesis/Moll/TFSsources.zip

In addition to the methods described below, for almost every class the output operator ‘<<’ has been
defined. This means that for instance a feature structure can be printed in the same way as a string, a
number, etc.:

cout << "A string" << fs << 12.34;

In this examplefs is a feature structure andcout stands for the current output file. Also, for almost every
class a method calledmapToCode is defined. This method prints an object as C++ code to the output file
specified by the argument. The generated code consists of a number of declarations.

Before the classes are described I shall point out some peculiarities of object-oriented programming in
general and C++ in particular (see also Bergin (1994) and Stroustrup (1991)). First, an important notion
in object-oriented programming is that all methods work on an object of a certain class. Ideally, an object
is only modified by its own methods (i.e., the methods of the class to which it belongs). Objects can be
created by so-calledconstructors. These constructors are methods with the same name as the class name.
The usage of constructors is a safe way to make sure that all data members of a class have valid values. The
opposite of a constructor is called adestructor. Destructors are used to dispose of an object that is no longer
necessary. They can take no arguments for obvious reasons. The name of a destructor is always the class
name preceded by a tilde.

In most object oriented languages it is possible to define multiple methods with the same name. This
is calledoverloading. The idea is that methods that have more or less the same effect on an object, but are
called with different arguments, can (or should) be given the same name. Overloading is very often applied
to (infix) operators. In the example above we have overloaded the ‘<<’ operator.

49

50 B. Description of Classes and Methods

Parser Chart

ChartIterator

Agenda

HeadCornerItem CompleteItem PredictItem

SymbolTable

ItemIterator

ItemList

ItemNode

Item

RuleEntry TypeEntry WordEntry VarEntry

Entry

GrammarScanner

Word Rule

FeatureStrucFeaturestrucList

TypeList Type

n

n

2

2

RuleIteratorLexicon

2

n

n

n

2

Figure B.1:The classes used in theTFS parser. Solid arrows mean that a class has an object of another
class as member. If a class has more than one object of the other class as members, then the number of
objects is indicated by the label on the edge of the arrow. Dashed arrows express an inheritance relation
between two classes.

Finally, I want to mention the possibility of specifyingdefault valuesfor arguments. If a default value
has been specified for an argument, such an argument can be omitted when the default value is the desired
value.

B.1 The FeatureStruc Class

TheFeatureStruc class is the most important and most extensive class. It describes the general structure of
typed feature structures and operations on them. The class contains also all the information about the types
and the type lattice. There is also a shared generation counter1 to check if intermediate results can still be
used. If the generation counter is increased, all intermediate results become obsolete. Note that methods that
use the generation counter cannot be nested: the first thing these methods will do is increase the generation

1Class members with this property are calledstaticmembers in C++.

B.1 TheFeatureStruc Class 51

counter, thereby destructing the intermediate results. If this becomes a problem for future extensions, it
can be easily solved in the following ways: (1) make the methods ‘atomic’ using a ‘Dijkstra-style’ lock
mechanism on the generation counter, or (2) make a local (with respect to themethod, not with respect to
theobject) copy of the generation counter for each method that wants to use it.

FeatureStruc (2 arguments) There are three different constructors for theFeatureStruc class. This one
creates a dummy feature structure. It is used to initialize the type list that is shared by all feature
structures1. The type list contains all information about the types and the type lattice. The first
argument to this constructor is an array of types, the second argument is an integer indicating the
length of the array. This constructor should be called only once, since it is not desirable that the type
lattice changes during program execution.

FeatureStruc (2 arguments) The first argument is an type identifier. The second argument is a string. The
default value for the second argument is the empty string. The constructor creates an instance of the
type indicated by the identifier. If the type is a string, a number or a predicate, the name of the feature
structure is set to the second argument. Otherwise the second argument is ignored.

FeatureStruc (5 arguments) The last constructor is somewhat more ‘low level’ than the other ones, in the
sense that the type list is not used to create a new feature structure, but all necessary information is
given by the arguments. The first argument is the type identifier, the second argument the name of the
feature structure, the third argument gives the number of features and the fourth and fifth argument
specify an array of feature names and feature values, respectively.

typeId (0 arguments) This method just returns the type identifier of an feature structure. In this way other
objects can read the type identifier, but can not change its value. The actual value is hidden and can
only be accessed directly by feature structures.

deleteFeatureStruc(0 arguments) This method functions as a sort of destructor. Since
(sub)feature structures can be shared, the number of times that a feature structure is referenced to
should be kept up to date. This is done by giving each node in a feature structure a link counter. A
call to deleteFeatureStruc decreases the link counter of every node by one. If a link counter is equal
to zero, the node is deleted.

addFeature (3 arguments) TheaddFeature method should normally only be used during the construction
of new types. (Otherwise a feature structure would already have all the necessary features.) The
first and second argument are feature name and feature value, respectively. The feature value is a
feature structure. The third argument is a flag with which the link counter of the feature value can be
controlled. If the flag is equal to zero, the link counter of all nodes in feature value are increased by
one. If the flag is equal to 1, only the link counter of the root node of the feature value is increased.
Any other value for the flag does not change the link counter.

assignFeatureValue(3 arguments) For assigning a new value to an existing feature, there are two meth-
ods. The first one has the same arguments asaddfeature. The old value of the feature with the name
given by the first argument is ‘deleted’ by a call todeleteFeatureStruc. Then the new value is assigned
to the feature.

assignFeatureValue(3 arguments) The second form ofassignFeatureValue uses an integer as first argu-
ment instead of an string. This integer indicates the position of a feature structure in the array of
feature values. This feature structure is ‘deleted’ bydeleteFeatureStruc and replaced by the new
value. This method allows faster access to a feature value, since no string comparisons have to be
executed. It can be used in cases where the exact position of a feature value is known.

52 B. Description of Classes and Methods

equal (1 argument) The methodequal takes another feature structure as argument and returnstrue if both
feature structures are equal. Two feature structures are equal if they describe the same graph and have
the same labels on the nodes and edges.

unify (1 argument) The unify method takes another feature structure as argument and tries to unify the
current feature structure with this feature structure. If unification is possible, it returns a pointer to the
resulting unifact. Otherwise it returns zero. The unification algorithm is described in section 2.3.

unify0 (1 argument) This method is an auxiliary method forunify and also takes one feature structure as
argument. It returnstrue, if unification is possible.Unify0 corresponds to the procedureuni�able in
figure 2.4.

build (1 argument) Thebuild method is a less restrictive variant of theunify method; it always succeeds
to create a resulting feature structure. It is used to build of new types when the specification is parsed
and should not be used during the parsing of sentences.

build0 (1 argument) This method is an auxiliary method forbuild and has the same function asunify0.

copyUnifact (1 argument) After a call tounify0 or build0 the feature structure contains the intermediate
results to generate the unifact. The generation of the unifact is done bycopyUnifact. The working of
this method is described in section 2.3.

copy (0 arguments) This method returns an exact copy of the current feature structure. No nodes are
shared.

incLinkCount (0 arguments) The incLinkCount method increases the link counter of all the nodes in the
current feature structure by one.

forward (1 argument) Theforward method sets the forward pointer to the feature structure pointer given
by the argument. It also sets theforwardMark to the current generation.

dereference(0 arguments) Dereference returns the forward pointer, if theforwardMark is equal to the
current generation and the forward pointer is not equal to zero. Otherwise a pointer to the current
feature structure is returned.

find (1 argument) The�nd method returns the index of the feature with the name specified by the argu-
ment in the array of features. If the requested feature does not exist, the value -1 is returned.

setCoreferences(0 arguments) This method places markers in those nodes that are referenced more than
once within the same feature structure. This method is called by the output operator before a feature
structure is actually printed.

nextGeneration (0 arguments) NextGeneration increases the shared generation counter by one.

B.2 The FeatureStrucList Class

TheFeatureStrucList class is used only used by theWord class. Ambiguous words are represented by a list
of feature structures and a lexeme. TheFeatureStrucList class uses theunifactmember of theFeatureStruc
class, which is a pointer to a feature structure, to link one feature structure to another.

FeatureStrucList (0 arguments) This constructor creates an empty list of feature structures.

B.3 TheType and theTypeList Class 53

FeatureStrucList (2 arguments) This constructor is called by themapToCode method. The first argument
is an integer indicating the length of the array of feature structures specified by the second argument.

insert (1 argument) Insert adds another feature structure to the list.

first (0 arguments) This method returns the head of the list.

next (0 arguments) Thenext method returns the next feature structure on the list. By making subsequent
calls tonext one can walk through the list. If the end of the list is reached, zero is returned.

B.3 The Type and the TypeList Class

TheType class is very simple. It is in fact only a record with some data. It contains a feature structure,
an array of type identifiers and a pointer to another type (to make a linked list of types). The array of type
identifiers is a row of the lower triangle least upper bound matrix as described in section 3.1 on page 15.
New types should only be created byTypeList methods, since these methods make sure that the type lattice
remains consistent. TheType class contains no methods, only a constructor to initialize a type.

TheTypeList class is used to store all information about types and the type lattice. TheFeatureStruc
class uses a type list to create new feature structures and to determine the least upper bound of two types.

TypeList (2 arguments) TheTypeList constructor has two arguments which can both be omitted. If no
arguments are given an empty type list is created. Otherwise the first argument is the length of the
array of types specified by the second argument. Giving zero or two arguments has an effect on the
internal representation of types. In the case of zero arguments the type list assumes the dynamic linked
list mode. This mode is used during the parsing of the specification. In the case of two arguments
the type list assumes the static array mode. This mode is used during the parsing of sentences. In the
static mode no more types can be added, but information in the list can be accessed faster.

get (1 argument) Theget method returns a copy of the type whose type identifier is given by the argument.

put (3 arguments) Theput method appends a new type to the end of the type list. The first argument is a
feature structure, the second argument contains the length of an array of supertypes specified by the
third argument. With this new type and the list of super types a new row can be added to the least
upper bound matrix. Theput method makes a call tocomputeClosure to update (if necessary) entries
in this matrix.

leastUpperBound (2 arguments) LeastUpperBound takes two type identifiers as arguments and returns
the type identifier of the least upper bound of the two corresponding types.

computeClosure(0 arguments) This method updates the least upper bound matrix after a new type has
been added. The algorithm used by this method is explained in section 3.1.

B.4 The Word and the Lexicon Class

The lexicon is implemented as a binary tree. Nodes in the tree are objects of theWord class. Every word
consists of a lexeme and a list of feature structures. Every feature structure stands for a different meaning of
the word. Furthermore, every word has two pointers to two other words—the standard way to implement a
tree. TheWord class contains no methods, only a constructor to initialize a word.

TheLexicon class contains almost no data; only a pointer to the root of the word tree and a counter for
the number of words in the tree. But theLexicon class does have some methods to operate on the word tree:

54 B. Description of Classes and Methods

Lexicon (2 arguments) Both arguments can be omitted. In that case an empty lexicon is created. The first
argument is an integer that stands for the number of words in the tree given by the second argument.
This number is not checked with the actual number of words in the lexicon.

insert (1 argument) The only argument forinsert is a feature structure. This method inserts a new word
or a new meaning for a word that already occurs in the lexicon. In the latter case the feature structure
is added to the list of feature structures for this word. The lexeme of the word can be extracted from
the name of the feature structure.

lookup (1 argument) Thelookup method takes a lexeme as argument and returns a list of feature structures
if the lexeme occurs in the lexicon. If the lexeme does not occur in the lexicon, it returns 0.

B.5 The Rule Class

TheRule class is derived from theFeatureStruc class. That is, it inherits the methods and data from the
FeatureStruc class. The symbols of a grammar rule correspond to the features of a feature structure. So it is
important that the features are ordered sequentially and that this order remains intact after every operation
on a grammar rule. Fortunately, the implementation of theFeatureStruc class is such that this constraint is
satisfied. In addition to theFeatureStruc methods, theRule class has its own methods:

Rule (2 arguments) TheRule constructor takes two arguments. The first argument is a feature structure,
which is a representation of a grammar rule. The second argument is the head of the grammar rule.

length (0 arguments) Length returns the number of symbols on the right-hand side of the grammar rule.

symbol (1 argument) Thesymbol method returns thenth symbol of the grammar rule, wheren is given by
the argument. A call tosymbol with n = 0 returns the symbol on the left-hand side.

featureStruc (1 argument) This method is similar to thesymbol method. Instead of the symbol it returns
the feature structure that corresponds to thenth symbol.

head (0 arguments) Head returns the head of the grammar rule.

unify (2 arguments) Theunify method takes two arguments. The first argument is a feature structure and
the second argument is an integer. The feature structure is unified with thenth feature structure of the
grammar rule. The resulting rule is returned.

B.6 The Grammar Class

With theGrammar class a set or rules and the reflexive and transitive closure of the head-corner relation can
be kept together. The set of rules is implemented as a simple array of rules and the head-corner relation is
implemented as a two-dimensional array of booleans.

Grammar (5 arguments) TheGrammar constructor takes five arguments. The last two arguments can be
omitted. The first argument is an integer that specifies the (maximum) number of rules in the grammar.
The second argument gives the number of symbols that occur in the grammar. This is determines the
size of the head-corner matrix. The third argument is the start symbol of the grammar. The fourth
and fifth argument are the array of rules and the head-corner relation, respectively. So, the fourth and
fifth argument can only be used if every grammar rule known in advance. This is used when aTFS
specification of the grammar has been read and the C++ code is to be generated.

B.7 TheRuleIterator Class 55

size (0 arguments) Size returns the number of rules in the grammar.

insert (1 argument) With insert a rule can be inserted in the grammar (as long as the number of rules does
not exceed the maximum number of rules, as specified with the constructor call).

get (1 argument) Theget method returns thenth grammar rule in the array, wheren is an integer given by
the argument.

startSymbol (0 arguments) StartSymbol returns the start symbol of the grammar.

computeClosure(0 arguments) The computeClosure method computes the reflexive and transitive clo-
sure of the head-corner relation. After all rules have been inserted in the grammar a call tocompute-
Closure has to be made.

HCclosure (2 arguments) HCclosure takes two grammar symbolsA andB as arguments and returnstrue
iff A>∗h B.

B.7 The RuleIterator Class

An iterator is a very general structure, that provides a way to access the elements in a collection one by one.
The typical usage of any iterator is like this:

// initialize a new iterator:
Iterator* iterator = new Iterator(collection);
Element* element;

while (iterator->next(element)) {
do something with element

}

In the example abovecollection is some collection containing elements of typeElement . Iterator*
is the C++ notation for ‘a pointer to anIterator ’. Likewise,Element* is ‘a pointer to anElement ’.

The methods of theRuleIterator class are straightforward: they provide a simple way to ‘walk’ through
all the rules in an object of theGrammar class.

RuleIterator (1 argument) TheRuleIterator requires one argument: the grammar on which the iterator is
going to operate.

next (1 argument) Thenext works different than any other method we have seen so far. Usually arguments
function as input, but in this case the argument is used to return the next rule. The method itself returns
true iff all rules have been accessed. See also the example above.

reset (0 arguments) This method reinitializes the iterator to the first element of the grammar.

done (0 arguments) Done returnstrue iff all rules have been accessed.

56 B. Description of Classes and Methods

B.8 The Item Class and Its Subclasses

The head-corner parsing algorithm for typed feature structures has been explained in section 5.3. This
algorithm has been implemented in the following way in C++. The common properties of the different
kinds of items are described in theItem class. Data and methods specific for complete items, predict items
and head-corner items are implemented in classes derived from theItem class. For every kind of item
there is a different subclass. Every class has an constructor (of course) to create new items, a method
calledcombineWithChart that tries to create new items by combining the current item with the items on the
chart and method calledequal that returnstrue iff the argument is equal to the current item. So there are
different classes with methods that have the same name and do the same thing at the conceptual level, but
work differently at the implementation level. The methodcombineWithChart calls several other methods to
create new items. The number and implementation of these methods differ for the subclasses.

B.9 The ItemList Class and Related Classes

The ItemList class is used as the base class for theAgenda class and is also used in the implementation of
theChart class. TheItemList class is implemented as an ordinary first-in-first-out list; there is a method to
put items on the list, a method to get items from the list and a method to check if the list is empty.

There is also anItemIterator class that is implemented in the same way as the rule iterator. The only
difference is that theItemIterator constructor hastwo arguments: the first argument is anItemList object
and the second argument is the kind of item that the iterator must look for. So, if we set the second argument
to complete item, then thenext method will return only the complete items on the list and will skip any
other items.

B.9.1 TheAgenda Subclass

TheAgenda class is almost the same as its superclassItemList. There is only one difference. Putting items
on the agenda works slightly different now. The method for putting items on a list is calledputItem for both
theItemList class and theAgenda class, but theputItem method for theAgenda class takestwoarguments.
The first argument is a pointer to the chart and the second argument is an item. If the item already occurs on
the chart, thenputItem doesn’t do anything. Otherwise the item is put on both the chart and agenda.

B.9.2 TheChart Class

TheChart is implemented as a matrix of item lists. Every entryei, j in the matrix is a list of items that have
position markersi and j. Since0 ≤ i ≤ j ≤ n the matrix is in fact an upper-triangular matrix. This kind of
structure allows fast searching in the chart, if the position markers of the item that is searched for are already
known. The constructor for the Chart class requires the sentence length as an argument to determine the
size of the matrix. The interface ‘on the outside’ is the same as for theItemList : the methodputItem simply
requires anItem as argument and adds it to the right item list

B.10 The Scanner Class

The scanner reads characters from the input file and returns initial items to the parser. It does so by using
a lexical analyzer created byflex++ (see also appendix C.2). The lexical returns one word at a time and

B.11 TheParser Class 57

skips unwanted characters (like spaces and line break characters). The scanner looks up every word in the
lexicon and returns one complete item at a time. TheScanner class has the following methods:

Scanner (1 argument) The constructor takes one argument: a pointer to a lexicon. This lexicon is used to
look up the feature structures that are associated with a certain string.

sentenceLength(0 arguments) SentenceLength returns the length of the sentence scanned so far.

lookup (1 argument) The string that is returned by the lexical analyzer is passed tolookup, which looks up
the string in the dictionary. It puts the resulting list of feature structures (if any) in an internal variable
of the scanner.

nextItem (0 arguments) This is the method that should be used by the parser to create the initial items.
ThenextItem method simply returns complete items until the end of the sentence is reached. At the
end of a sentence the value 0 is returned. Note that ambiguous words are handled by the scanner
alone; the parser does not see the difference between ambiguous or successive words.

reset (0 arguments) The reset method resets the internal variables of the scanner to enable it to scan an-
other sentence.

B.11 The Parser Class

The parser uses all the previous classes to parse sentences. It reads the sentences from the standard input
and after a sentence has been parsed the chart can be printed to a file or to the standard output. TheParser
class does not need many methods, because most of the parsing is handled by other classes (like theItem
class).

Parser (2 arguments) The constructor for theParser class requires two arguments: a grammar and a scan-
ner.

readInitialItems (0 arguments) ThereadInitialItems method reads the initial items by making subsequent
calls to thenextItem method of the scanner until the end of an sentence is reached. It creates an initial
chart and puts the initial items on the agenda.

parse (0 arguments) Theparse parses one sentence and returnstrue iff a parse of the sentence has been
found.

final (1 argument) This method returnstrue iff the argument is a final item, that is, a parse has been found.

B.12 The SymbolTable Class

A symbol table is the usual way that compilers use to store information about identifiers. TheTFS parser
stores information about types, words, rules and variables in this table. After a specification has been read,
the entries are mapped to an internal representation. This means that types are added to a type list, the
words are added to a lexicon and the rules are added to a grammar. After this has been done, these internal
representations are mapped to C++ code. It is not necessary to map entries for variables to an internal
representation or C++ code. These entries are only used to see if a variable is bound or unbound within a
certain scope. At the end of the scope these entries are removed.

58 B. Description of Classes and Methods

SymbolTable (0 arguments) TheSymbolTable constructor does nothing else than initializing the internal
data members of the class.

insertBasicTypes(0 arguments) TheTFS parser provides many basic types that must be inserted with a
call to insertBasicTypes before any other types are inserted in the symbol table. The basic types can
be used in a specification. There are basic types for strings, numbers, but also for QLF entities such
as the logical ‘and’.

makeBasicType(0 arguments) ThemakeBasicType is an auxiliary method forinsertBasicTypes. It takes
three arguments: a type identifier, an integer indicating how many features the new type will have and
a name. This method will create a feature structure and give it a unique type identifier2 and a name.
At this moment only thenumberof features can be specified, not their names or values. Based on the
second argument features are created with names op1, op2,. . . opn. The feature values are all set to⊥.

insert (3 arguments) There are three different methods to insert an entry in the the symbol table. It depends
on the kind of entry which method is used. This method is intended to insert a type entry. The first
argument is a feature structure, the second argument is an integer and the third argument is an array
of type identifiers. The integer gives the length of the array. The array is meant to be a list of
supertypes for the new type. The last two arguments are normally not used; they are used only by
insertBasicTypes. Normally, the list of supertypes is constructed during parsing and is kept in an
internal variable. Theinsert method gives the new type a unique identifier, puts the type in the type
list that is used by the feature structures. Theinsert method also adds the unbound variables that occur
in the QLF part of the type to the ‘unbound’ feature. Finally it inserts the type entry in the symbol
table.

insert (3 arguments) This second version ofinsert can be used to insert a word or a variable. The first
argument is the name of the word or variable, the second argument is a feature structure and the last
argument is a flag indicating whether a word or a variable is to be inserted. In the case of a variable
the feature structure is at this moment always equal to⊥, but in future versions of theTFS parser
(when initial values for variables can be specified) this might change. A variable that is inserted, is
added to the list of variables in the current scope. This list gets deleted at the end of the scope.

insert (2 arguments) The last version ofinsert can be used to insert grammar rules in the symbol table.
The first argument is an integer indicating the position of the head in the rule and the second argument
is a feature structure representation of the rule. The name of a rule is made equal to a character
representation of the context-free grammar rule (like “S --> NP *VP* ”). The start symbol of the
grammar is made equal to the symbol on the left-hand side of the first rule that is inserted.

lookup (2 arguments) Thelookup method looks up an entry with a name given by the first argument in the
symbol table. With the second argument the kind of the desired entry can be specified. This implies
that there can be multiple entries with the same name; as long as they have different kinds they can
still be found. Thelookup method returns the feature structure that belongs to the entry if an entry
has been found. Otherwise the value 0 is returned.

appendEdge(2 arguments) This method appends an edge (the second argument) to feature path (the first
argument). The new path is returned. A feature path is a feature structure where every node has only
one feature (except of course for the node at the end of the path, which has no features). An edge is a
feature structure is a path of length 1.

2The method that callsmakeBasicType has to ensure that the identifier is indeed unique.

B.13 TheEntry Class and Its Subclasses 59

appendNode(2 arguments) The appendNode method replaces the node at the end of an path (the first
argument) with another feature structure (the second argument). The new path is returned.

join (2 arguments) Join takes two paths as arguments and joins the ends (and the beginnings) of the paths.
The resulting feature structure is returned.

unboundVariable (1 argument) The unboundVariable method adds a feature to the ‘unbound’ feature
structure. This ‘unbound’ feature structure is reinitialized when a scope is entered. The feature
names of ‘unbound’ are the unbound variables and the feature values are the feature structures that
are associated with these names.

addUnboundVars (1 argument) At the end of the scope the ‘unbound’ feature structure can be added to a
feature structure. This is done by theaddUnboundVars method.

newType (0 arguments) This method should be called at the beginning of a new type definition. It initial-
izes the variables that contain information about the super types.

addSuperType (1 argument) AddSuperType takes an type identifier as argument and adds it to the list of
super types that is kept for the currently defined type.

beginScope(0 arguments) Currently scopes cannot be nested. So, thebeginScope clears all old scope
information and reinitializes the list of variables in the scope.

endScope(0 arguments) TheendScope method deletes the list of variables in the scope.

hashpjw (1 argument) This is the hash function by P.J. Weinberger. According to the ‘dragon book’ Aho
et al. (1986), pages 435–438, this is one of the best hash functions. It maps a string (the argument) to
an index in the table.

B.13 The Entry Class and Its Subclasses

Similarly to theItem class, the common properties of entries in the symbol table have been defined in the
Entry class and the different kind of entries are refined in different subclasses. Actually, objects of the
subclassesTypeEntry, WordEntry andRuleEntry are nothing more than ‘wrappers’ around objects of the
FeatureStruc or Rule class. These subclasses have a method calledmapToInternalRepresentation , which
adds an entry to a type list, a lexicon or a grammar. These methods are called when the entire specification
has been read.

In addition to the subclasses mentioned above, there is a subclassVarEntry. This subclass can be used
to store and retrieve information about variables.

60 B. Description of Classes and Methods

Appendix C

Software Development Tools

Software development can be much easier if you have the right tools. Unfortunately, it can take quite
some time to find out what kind of tools are available, which ones are the most useful and how they

actually can be used. There is very little documentation about what software can be used and how it works1.
In this appendix I shall give a short overview of the programs that I have used for the development of the
TFS parser. In the first section I shall point out how the right editor can help in formatting source code and
detecting simple errors before compilation. Also in this section I will give a short description of the Source
Code Control System (SCCS), that can help to keep track of the changes in the source code.

In the next section the usage of a makefile, compilers and compiler-compilers is discussed. Finally, in
section C.3 I will say a few things about debugging.

C.1 Source Code Editing and Maintenance

The design process of a program consists of several stages. After the conceptualization, where the task that
the program is going to perform is defined, an initial implementation can be made. In this implementation
several subtasks are identified. After this has been done these subtasks can be coded in C++. In general, a
subtask corresponds to a class in C++. The right editor can make the creation of source code a bit easier. I
have found the GNU Emacs editor particularly useful for my needs. Emacs has the following features that
might be useful for editing a program:

highlighting of matching brackets This feature is not unique for Emacs; most editors nowadays show the
matching opening bracket when a closing bracket is typed. But Emacs also ‘shows’ the opening
bracket when it is not in the current window. In such a case Emacs says something like “Matches
int main() {” (where int main() is the beginning of some procedure) on the command line.

C++ style indentation Emacs ‘knows’ C++ and it indents each line the right way. So, if a closing bracket
is forgotten, it is noticed immediately, because the code will be indented one level to deep.

1This is not completely true; there is a lot information in the form of so-called man-pages on the network file system, but these
pages can only be found if the user specifies where they are.

61

62 C. Software Development Tools

multiple buffers and windows Working on a large program often means that more than one file is edited
at the same time. Emacs can hold multiple files at the same time. If necessary, multiple windows
can be opened, so that more than one file can be seen at the same time. This is convenient when an
implementation is made in one window of a header file in another window.

highlighting of keywords This feature cannot be used on a black and white display, but it seems that when
a color display is used the keywords, variables and method names are given different colors. This
would make it easier to detect typos.

Once source files are created, they can be added to the Source Code Control System (SCCS). With this
system the user can keep track of changes that have been made to the source. If certain changes turn out to
be wrong, an older version of the source file can be retrieved. Old versions can be retrieved based on the
date they were created or on their revision number. To each version an optional comment describing the
changes can be added. SCCS is also very useful when multiple users are working on the same program:
SCCS registers which source files are ‘checked out’. It registers what files are checked out, by who and if
they are checked out for editing or just viewing. Files can be checked out only once for editing, but multiple
times for viewing.

C.2 Compilers and Compiler-Compilers

The next step in the program development process is the compilation of the source files. Usually, there are
many dependencies between the different files: implementation files depend on the header files and classes
in one file often use objects of classes in another file. This means that when a file is changed, all other files
that depend on this file need to be recompiled, too. With a so-called makefile these dependencies can be
laid down. When the makefile is executed it checks which files have changed and which files need to be
recompiled. The following example shows how dependencies can be specified in a makefile:

Main.o: Main.c Parser.h Scanner.h
$(CC) $(CFLAGS) -c Main.c

This fragment says that the fileMain.o depends onMain.c , Parser.h andScanner.h . If one of
those files is changed, the fileMain.c is recompiled to create a newMain.o .

Most source files are C++ files and can be compiled with any C++ compiler. As far as I know, all the
library functions that I have used (for e.g. handling I/O and strings) are part of the standard C/C++ libraries.
So theTFS parser could be recompiled on any other platform that has a C++ compiler. The C++ compiler
I used was the GNU C++ compilerg++, because it works nicely together with the GNU debugger (see
section C.3) and because it comes with a lot of online documentation.

Besides the C++ files there also source files that contain specifications of the lexical analyzer and the
parser ofTFS. With a lexical analysis program generator and a compiler-compiler these specifications can
be turned into C++ code. The specification of the parser consists of a set of grammar rules, extended with
appropriate semantic actions. The following example shows how this can be done (cf. appendix A).

path: edge
{ $$ = $1; }
| path edge
{ $$ = symbolTable.appendEdge($1,$2); }

;

C.3 Debugging 63

This piece of code corresponds to the context-free grammar rulepath→ edge | path edge. The seman-
tic actions are the C++ expressions between the curly brackets. For instance,$$ = $1; means that the
semantic value of the left-hand side is equal to the semantic value of the right-hand side.

The advantages of using a compiler-compiler instead of coding the scanner and parser directly in C++
are obvious. A specification is easier to change, easier to read and syntax and semantics can be changed
independently from each other.

The standard lexical analysis program generator islex and the standard compiler-compiler isyacc ,
but these programs generate C code and not C++ code. This problem was solved by using the GNU versions
of lex andyacc : flex++ enbison . These programs can generate C++ code, so that the scanner and
parser can be integrated easily into the rest of the program.

C.3 Debugging

The final steps in the development of a program are debugging and testing. If all compilation errors have
been corrected, the program can be run. By turning on certain compiler options the program can give some
extra information when a run-time error occurs. Usually a debugger is used to run the program. With a
debugger the program can be halted at certain points or one can ‘walk’ statement by statement through the
program. Also, the values of certain variables can be checked.

For debugging I usedxxgdb , an X-Window front-end for the GNU debugger. This debugger uses four
windows: (1) a window for giving commands, (2) a window to view the source that the program is currently
executing, (3) a window to display the values of variables and (4) a sort of ‘remote control’ window which
contains buttons for the most common debugging commands. With this debugger one can set breakpoints
on certain methods, so that the exact behaviour of that particular method can be inspected.

In addition to the debugging information that the compiler adds to the program, I have added many lines
of code for debugging purposes, that can be compiled conditionally. That is, by specifying certain options
in the makefile some extra code is compiled. So, the performance of the program will not be affected if no
option is specified. Typically such debugging code occurs at the beginning and at the end of a method. This
code will then print the values of parameters and the result that is going to be returned. In total there are
about 20 debug options. Usually an option corresponds to one method. Multiple options can be turned on at
the same time.

Many run-time errors are caused by the usage of uninitialized variables, by indices that exceed array
bounds and by the usage of pointers to freed memory (‘dangling pointers’). A program that helps detecting
these types of errors ispurify . This program is invoked from within the makefile. It should be added to
the line where the actual executable program is made. Thepurify program will add some extra debugging
code to the program. Before a run-time error is actually made it halts the program. In the case of dangling
pointers it will give information about where the memory was claimed, where it was freed and it will show
the line in the source code were the error is about to occur.

Besides detecting these run-time errors,purify will also give information about so-called memory
leaks. If program exits without run-time errors it is not necessarily so that no error occured. It might very
well be that many pointer structures have claimed a lot of memory and that the program ‘forgets’ to free
the memory when it is no longer needed. This type of error can become fatal if the prototype is going
to be scaled up to a commercial application: the memory usage might grow exponentially with the size
of the input. After the program has finishedpurify will show what memory is still in use. It will give
information what kind of objects there are in memory and where they were created.

64 C. Software Development Tools

Appendix D

Test Results

Several test files were given as input to theTFS parser. In the beginning only the definition of types
and the type lattice was tested. In the next step more complex operations like inheritance were tested.

Finally, specifications of words and grammar rules were fed to theTFS parser. After the input was parsed,
the contents of the symbol table was printed on the standard output (initially) or mapped to C++ code (in
the end).

D.1 The Type Lattice Example

The computation of the least upper bound matrix was tested with the same example as in section 3.1. The
(specification of the) lattice for which the least upper bound matrix has to be computed looks like this:

TYPE(s; ; ;)
TYPE(t; ; ;)
TYPE(u; s; ;)
TYPE(v; t; ;)
TYPE(w; u; ;)
TYPE(x; u,v; ;)

s

u v

t

w x

65

66 D. Test Results

If the TFS parser has read this specification the least upper bound matrix looks like this:

LUB | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bottom 1 | 1
top 2 | 2 2

boolean 3 | 3 2 3
not 4 | 4 2 4 4
and 5 | 5 2 5 2 5

or 6 | 6 2 6 2 2 6
imply 7 | 7 2 7 2 2 2 7

boolquant 8 | 8 2 8 2 2 2 2 8
forall 9 | 9 2 9 2 2 2 2 9 9
exists 10 | 10 2 10 2 2 2 2 10 2 10

exists1 11 | 11 2 11 2 2 2 2 11 2 2 11
set 12 | 12 2 2 2 2 2 2 2 2 2 2 12

mood 13 | 13 2 2 2 2 2 2 2 2 2 2 2 13
concat 14 | 14 2 2 2 2 2 2 2 2 2 2 2 2 14

<predicate> 15 | 15 2 15 2 2 2 2 2 2 2 2 2 2 2 15
termrel 16 | 16 2 16 2 2 2 2 2 2 2 2 2 2 2 2 16

<string> 17 | 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 17
<number> 18 | 18 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 18

card 19 | 19 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 19 19
> 20 | 20 2 20 2 2 2 2 2 2 2 2 2 2 2 2 20 2 2 2 20
< 21 | 21 2 21 2 2 2 2 2 2 2 2 2 2 2 2 21 2 2 2 2 21
= 22 | 22 2 22 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 22

>= 23 | 23 2 23 2 2 2 2 2 2 2 2 2 2 2 2 23 2 2 2 2 2 2 23
<= 24 | 24 2 24 2 2 2 2 2 2 2 2 2 2 2 2 24 2 2 2 2 2 2 2 24
!= 25 | 25 2 25 2 2 2 2 2 2 2 2 2 2 2 2 25 2 2 2 2 2 2 2 2 25

s 26 | 26 26
t 27 | 27 2 31 27
u 28 | 28 28 31 28
v 29 | 29 2 31 29 31 29
w 30 | 30 2 30 2 30 2 30
x 31 | 31 2 31 31 31 31 2 31

The numbers in the matrix refer to the unique number that is given to each type. For example, the
number fortop (‘>’) is 2. Not only the specified types have been inserted, but also all the basic types. If
we compare the bottom right corner of this matrix with figure 3.2, we see that the least upper bound has
been computed correctly.

D.2 The ‘Jan lives in Amsterdam’ Example

In this section the full specification is given of the example as it was used in section 3.4. After the specifi-
cation has been read, the contents of the symbol table is sorted out into a type list, a lexicon and a grammar.
These three objects are then printed. For the type list only the least upper bound matrix is shown. From this
least upperbound matrix the entries for the basic types have been deleted, since they are the same as for the
previous example and the matrix would otherwise not have fitted on the page.

// type section:
TYPE(numbertype;;;)
TYPE(singular;numbertype;;)
TYPE(plural;numbertype;;)
TYPE(persontype;;;)
TYPE(first;persontype;;)
TYPE(second;persontype;;)

D.2 The ‘Jan lives in Amsterdam’ Example 67

TYPE(third;persontype;;)
TYPE(agreementtype;;

<num> := numbertype,
<pers> := persontype;)

TYPE(constituent;;
<agr> := agreementtype;)

TYPE(thirdsing;constituent;
<agr num> := singular,
<agr pers> := third;)

TYPE(s;constituent;;)
TYPE(np;constituent;;)
TYPE(vp;constituent;;)
TYPE(noun;np;;)
TYPE(verb;constituent;

<agrobj> := bottom;)
TYPE(pp;constituent;;)
TYPE(prep;constituent;;)
TYPE(propernoun;noun;;)
TYPE(location;agreementtype;;)
TYPE(inlocation;location;;)
TYPE(transitive;verb;;)
TYPE(person;noun;;

EXISTS Person (personname(Person,Name)))

// lexical entries:
LEX("Jan"; propernoun, person, thirdsing;

<unbound name> := "Jan";)
LEX("lives"; transitive, thirdsing;

<agr> := location;
livesin(Subject,Object))

LEX("in"; prep; <agr> := inlocation;)
LEX("Amsterdam"; propernoun, thirdsing;

<agr> := location;
EXISTS Location (locationname(Location,"Amsterdam")))

// grammar rules:
RULE(s --> np *vp*; // Jan lives in Amsterdam

<np agr> = <vp agr>,
<s agr> = <vp agr>,
<vp unbound subject> = <np qlf>,
<s qlf> = <vp qlf>)

RULE(vp --> *verb* pp; // lives in Amsterdam
<verb agr> = <pp agr>,
<vp agr> = <verb agr>,
<vp unbound subject> = <verb unbound subject>,
<vp unbound object> = <verb unbound object>,
<vp unbound object> = <pp qlf>,

68 D. Test Results

<vp qlf> = <verb qlf>)
RULE(pp --> *prep* np; // in Amsterdam

<pp agr> = <prep agr>,
<pp agr> = <np agr>,
<pp qlf> = <np qlf>)

Given the above specification the least upper bound matrix for the types, the lexicon and the grammar
look like this:

LUB | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

numbertype 26 | 26
singular 27 | 27 27

plural 28 | 28 2 28
persontype 29 | 2 2 2 29

first 30 | 2 2 2 30 30
second 31 | 2 2 2 31 2 31

third 32 | 2 2 2 32 2 2 32
agreementtype33 | 2 2 2 2 2 2 2 33
constituent 34 | 2 2 2 2 2 2 2 2 34

thirdsing 35 | 2 2 2 2 2 2 2 2 35 35
s 36 | 2 2 2 2 2 2 2 2 36 2 36

np 37 | 2 2 2 2 2 2 2 2 37 2 2 37
vp 38 | 2 2 2 2 2 2 2 2 38 2 2 2 38

noun 39 | 2 2 2 2 2 2 2 2 39 2 2 39 2 39
verb 40 | 2 2 2 2 2 2 2 2 40 2 2 2 2 2 40

pp 41 | 2 2 2 2 2 2 2 2 41 2 2 2 2 2 2 41
prep 42 | 2 2 2 2 2 2 2 2 42 2 2 2 2 2 2 2 42

propernoun 43 | 2 2 2 2 2 2 2 2 43 2 2 43 2 43 2 2 2 43
location 44 | 2 2 2 2 2 2 2 44 2 2 2 2 2 2 2 2 2 2 44

inlocation 45 | 2 2 2 2 2 2 2 45 2 2 2 2 2 2 2 2 2 2 45 45
transitive 46 | 2 2 2 2 2 2 2 2 46 2 2 2 2 2 46 2 2 2 2 2 46

person 47 | 2 2 2 2 2 2 2 2 47 2 2 47 2 47 2 2 2 2 2 2 2 47

Lexicon:

Amsterdam [agr: location [num: singular

pers: third
]

qlf: exists [op1: @1 Location
op2: locationname [op: concat [op1: @1

op2: Amsterdam
]]

]
]

Jan [agr: agreementtype [num: singular
pers: third

]
qlf: exists [op1: @1 Person

op2: personname [op: concat [op1: @1
op2: @2 Jan

]]
]

unbound: [Name: @2]
]

in [agr: inlocation [num: numbertype
pers: persontype

]]

lives [agr: location [num: singular

D.2 The ‘Jan lives in Amsterdam’ Example 69

pers: third
]

agrobj: bottom
qlf: livesin [op: concat [op1: @1 Subject

op2: @2 Object
]]

unbound: [Subject: @1
Object: @2

]
]

Grammar -- 3 rules

vp --> *verb* pp [vp: vp [agr: @1 agreementtype [num: numbertype

pers: persontype
]

unbound: [subject: @2
object: @3

]
qlf: @4

]
verb: verb [agr: @1

agrobj: bottom
unbound: [subject: @2

object: @3
]

qlf: @4
]

pp: pp [agr: @1
qlf: @3

]
]

pp --> *prep* np [pp: pp [agr: @1 agreementtype [num: numbertype
pers: persontype

]
qlf: @2

]
prep: prep [agr: @1]
np: np [agr: @1

qlf: @2
]

]

s --> np *vp* [s: s [agr: @1 agreementtype [num: numbertype
pers: persontype

]
qlf: @3

]
np: np [agr: @1

qlf: @2
]

vp: vp [agr: @1
unbound: [subject: @2]
qlf: @3

]
]
