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Abstract
We present a new method to reconstruct the shape of an unknown
object using tactile sensors, without requiring object immobilization.
Instead, sensing and nonprehensile manipulation occur simultane-
ously. The robot infers the shape, motion and center of mass of
the object based on the motion of the contact points as measured
by the tactile sensors. This allows for a natural, continuous inter-
action between manipulation and sensing. We analyze the planar
case �rst by assuming quasistatic dynamics, and present simulation
results and experimental results obtained using this analysis. We
extend this analysis to the full dynamics and prove observability of
the nonlinear system describing the shape and motion of the ob-
ject being manipulated. In our simulations, a simple observer based
on Newton's method for root �nding can recover unknown shapes
with almost negligible errors. Using the same framework we can
also describe the shape and dynamics of three-dimensional objects.
However, there are some fundamental di�erences between the planar
and three-dimensional case, due to increased tangent dimensionality.
Also, perfect global shape reconstruction is impossible in the 3D case,
but it is almost trivial to obtain upper and lower bounds on the shape.
The 3D shape reconstructionmethod has also been implemented and
we present some simulation results.

iii





A c k n o w l e d g m e n t s

First and foremost, I would like to thank the members of my thesis committee
for all their time and e�orts. I consider myself very lucky having had Michael
Erdmann as my advisor. He has given me a tremendous amount of freedom in
exploring di�erent directions. During our meetings he was always able to ask
the right questions. Matt Mason has also been a great source of good ideas.
Especially his intuitive mechanical insights have been really useful. Al Rizzi has
been very helpful in advising me on some control and engineering problems. Ken
Goldberg, my external committeemember, has givenme excellent feedback. I am
also grateful to him and Michael Erdmann for having given me the opportunity
to work in Ken Goldberg's lab on a side project.
Before coming to CarnegieMellon I have been fortunate to have worked with

two great researchers. I am greatly indebted toAntonNijholt, who has supported
me in many ways during my graduate studies at the University of Twente in the
Netherlands and long afterward. I also enjoyed my collaboration with Risto
Miikkulainen at the University of Texas in Austin. Through him I learned a lot
about doing research. He also encouraged me to pursue a PhD degree.
Finally, I would like to thank members of the Manipulation Lab for their

support and brutal honesty during many of my lab presentations: Yan-Bin Jia,
Garth Zeglin, Devin Balkcom, Siddartha Srinivasa, and Ravi Balasubramanian.
Many thanks also to honorary Manipulation Lab member Howard Choset for his
support and advice.

v





C o n t e n t s

Chapter 1 • Introduction 1
1.1 Motivation 1
1.2 Problem Statement 3
1.3 Thesis Outline 4

Chapter 2 • RelatedWork 7
2.1 Probing 7
2.2 Nonprehensile Manipulation 8
2.3 Grasping 11
2.4 Shape and Pose Recognition 12
2.5 Tactile Shape Reconstruction 13
2.6 Tactile Sensor Design 15

Chapter 3 • Quasistatic ShapeReconstruction 17
3.1 Notation 18
3.2 A Geometric Interpretation of Force/Torque Balance 23
3.3 Recovering Shape 25
3.4 Simulation Results 27
3.5 Experimental Results 33
3.6 Global Observability 35
3.7 Segmentation of Shape Reconstruction 43

Chapter 4 • Dynamic ShapeReconstruction 47
4.1 Equations of Motion 48
4.2 General Case 49
4.3 Moving the Palms at a Constant Rate 54
4.4 Fixed Palms 57
4.5 An Observer Based on Newton's Method 58
4.6 Simulation Results 60
4.7 Arbitrary Palm Shapes 63

vii



Chapter 5 • ShapeReconstruction in ThreeDimensions 67
5.1 Notation 67
5.2 Local Shape 70
5.3 Dynamics 74
5.4 Integrating Rotations 75
5.5 Simulation Results 76
5.6 Shape Approximations 79

Chapter 6 • Conclusion 83
6.1 Contributions 83
6.2 Future Directions 86

Appendix A • Derivations 93
A.1 Quasistatic Shape Reconstruction 93
A.2 Observability of the Planar Dynamic Case 96
A.3 Force/Torque Balance in Three Dimensions 98

References 101

viii



L i s t o f F i g u r e s

1.1 Two possible arrangements of a smooth convex object resting on palms that are
covered with tactile sensors. 3

1.2 An object resting on three palms. 4

2.1 Related work in tactile shape reconstruction. 15

3.1 Inputs and outputs of the system formed by the palms and the object. 17
3.2 The contact support function. 18
3.3 The di�erent coordinate frames. 20
3.4 The generalized contact support functions. 21
3.5 The dependencies between sensor values, the support function and the angle

between the palms when the object makes two-point contact. 23
3.6 The frames show the reconstructed shape after 10, 20,. . . ,270 measurements. 29
3.7 The di�erences between the actual and observed shape. 30
3.8 The observable error for the reconstructed shape. 31
3.9 Resolution and sensing frequency of the VersaPad. 32
3.10 Setup of the palms. 33
3.11 Experimental setup. 34
3.12 Experimental results. 35
3.13 Stable poses for a particular shape. 36
3.14 Plan for observing the entire shape of an unknown object. 38
3.15 An antipodal grasp. 39
3.16 A more complicated stable pose surface. 40
3.17 Many stable poses are possible for a given palm con�guration that produce the

same sensor readings. 42
3.18 The error of two (radially) overlapping segments is equal to the area between

them. 44

4.1 Forces acting on the palms and the object. 48
4.2 Newton's method. 59
4.3 The frames show the reconstructed shape after 10, 20,. . . ,400 measurements. 61
4.4 Shape reconstruction with an observer based on Newton's method. 62

ix



4.5 Circular palms. 64

5.1 The coordinate frame de�ned using spherical coordinates 68
5.2 Illustration of the notation. 69
5.3 An object rolling and sliding on immobile palms with gravity and contact forces

acting on it. 78
5.4 Di�erences between real and recovered shape and motion. 79
5.5 The convex hull of the contact curves gives a lower bound on the volume

occupied by the object. 80
5.6 Two spherical palms holding an object. 81

6.1 Direction of the contact force in the absence and presence of friction. 86
6.2 Di�erent types of contact. 87
6.3 Dragging an object over a tactile sensor with a pivoting grasp. 90
6.4 A mobile robot consisting of two mass-less rods d1 and d2 connected at the

center of mass cm in contact with a curve. The wheels are at the end points of
d1 and d2. 91

x



N o t a t i o n

The notation in each chapter relies as much as possible on the notation used in
previous chapters. Below we only de�ne notation introduced in the correspond-
ing chapter.

Chapter 3
s1, s2 sensor values on palm 1 and palm 2, respectively
φ1 angle between X-axis of the world frame and palm 1
φ2 angle between palm 1 and palm 2
φ0 orientation of the object held by the palms
R0 rotation matrix that maps points in the object's body coor-

dinates to world coordinates
cm center of mass of the object
cr center of rotation of the object
x(θ) curve describing the shape of the object
v(θ) radius of curvature at x(θ)
n(θ), t(θ) normal and tangent at x(θ)
n̄i, t̄i normal and tangent at the contact point on palm i in world

coordinates
(r(θ), d(θ)) contact support function
(r̃i(θ), d̃i(θ)) generalized contact support function relative to contact

point i
e f error in force/torque balance constraint
ec error in two-point contact constraint

Chapter 4
q vector describing the state of the system formed by the palms

and the object
Fz the gravity vector acting on the object
g the gravity constant, equal to −9.81m/s2

Fci contact force at contact point i acting on the object
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fci magnitude of Fci
τci torque generated by the contact force at contact point i on

the object
τi torque exerted by the motor of palm i
f (q) drift vector �eld; the rate of change of the system if no

torques are applied
gi(q) control vector �eld i; the rate of change of the system due to

τi
h(q) output function of the system
y output vector of the system; y = h(q)
ωi, i = 0, 1, 2 rotational velocity of the object, palm 1, and palm 2
αi, i = 0, 1, 2 angular acceleration of the object, palm 1, and palm 2
a0 acceleration of the object
Ii, i = 0, 1, 2 moment of inertia of the object, palm 1, and palm 2
m mass of the object
ρ radius of gyration of the object
dφ(q) di�erential of a function φ; dφ(q) =

( ∂φ
∂q1

, . . . , ∂φ
∂qn

)
LXφ Lie derivative of a function φ along a vector �eld X; LXφ =

dφ · X
ci contact point i in world coordinates
bi radius of circular palm i
Ri matrix describing the orientation of palm i

Chapter 5
x(θ) surface describing the shape of the object
[t1(θ),t2(θ),n(θ)] local coordinate frame at x(θ)
(r(θ),d(θ),e(θ)) 3D contact support function
[t̄i1,t̄i2,n̄i] coordinate frame at the contact point on palm i in world

coordinates.
βi(t) curve in object coordinates traced out by contact point i on

the surface of the object.
si = (si1, si2, 0)T vector of sensor values at palm i
I inertia matrix of the object
φi angle between palm i and the horizontal plane
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C h a p t e r 1

Introduction

1.1 Motivation
There are many examples in everyday life of robotic systems that have almost
nothing in common with the walking and talking humanoids of popular culture:
robots assemble cars, assist in telesurgery, and can be used to assemble nano-
structures. In all these examples it is critical that the robot can manipulate,
sense, and reason about its environment. We can create a better understanding
of fundamental manipulation and sensing strategies through rigorous exploration
of the algorithmic and geometric aspects of robotics. For many tasks there is a
trade-o� between manipulation and sensing. For example, a robot can establish
the orientation of an object with a vision system or by pushing and aligning the
object with a �xture. There is not only a trade-o�, but there are also interactions
between action and sensing. Sensor information can be used to guide certain
actions, and manipulation can be used to reduce uncertainty about the state of
the environment. There are many seemingly simple tasks such as tying shoe
laces or recognizing an object by touching it, that pose enormous problems for
automated systems today. The di�culty of these tasks is caused in part by the
uncertainty in the knowledge about the environment and by the di�culty of
tightly integrating sensing with manipulation. In our research we aim to tighten
this integration as well as explore what the minimal manipulation and sensing
requirements are to perform a given task.
Robotic manipulators typically cannot deal very well with objects of partially

unknown shape and weight. Humans, on the other hand, seem to have few
problems with manipulating objects of unknown shape and weight. For example,
Klatzky et al. (1985) showed that blindfolded human observers identi�ed 100
common objects with over 96% accuracy, in only 1 to 2 seconds for most objects.
Besides recognizing shape and size, humans also use touch to determine vari-
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ous features such as texture, hardness, thermal qualities, weight and movement
(Lederman and Browse, 1988).
It seems unlikely that people mentally keep track of the exact position, shape

and mass properties of the objects in their environment. So somehow during
the manipulation of an unknown object the tactile sensors in the human hand
give enough information to �nd the pose and shape of that object. At the same
time some mass properties of the object are inferred to determine a good grasp.
These observations are an important motivation for our research on tactile shape
reconstruction. In most research on tactile shape reconstruction it is assumed
that the object being touched is in a �xture, or at least does not move as result of
being touched by a robot (Fearing and Binford, 1988; Montana, 1988; Allen and
Michelman, 1990; Okamura and Cutkosky, 1999; Kaneko and Tsuji, 2001). This
makes the shape reconstruction problem signi�cantly easier, but it introduces
another problem: how to immobilize an unknown object. In this thesis we don
not assume the object is immobilized. Instead, we will solve for the motion
and shape of object simultaneously. In the process we will also recover the
mass properties of the object. We will show that the local shape and motion
of an unknown object can be expressed as a function of the tactile sensor data
and the motion of the manipulators. By `local shape' we mean the shape at
the contact points. Our approach allows for a natural, continuous interaction
between manipulation and sensing.
As tactile sensors become more and more reliable and inexpensive, it seems

inevitable that touch sensors will be mounted on more general purpose robot
hands and manipulators. Being able to manipulate unknown objects is very
valuable for robots that interact with the real world. It is often impossible to
predict what the exact position of a robot and the exact forces should be to
manipulate an object. Being able to handle these uncertainties allows a robot
to execute tasks that may only specify approximate descriptions of shape and
position of an object of interest. Pushing this idea even further, tactile data
can add another dimension to simultaneous localization and mapping (slam), an
important problem for mobile robots. But also in settings where the shapes and
positions of objects in the robot's workspace are known, tactile sensors could
provide useful information. It is possible that there are slight variations in the
shape and position of the objects, or that there are errors in the robot's position.
With the information from tactile sensors the robot can adjust its position and
re�ne its grasp. Tactile sensing may also be useful in manipulating deformable
objects. This would have applications in, e.g., medical robotics.
We could also reconstruct an unknown shape with a camera by taking a series

of pictures and reconstruct the shape from that. However, recovering a shape
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(b) Two �ngers.

Figure 1.1: Two possible arrangements of a smooth convex object resting on
palms that are covered with tactile sensors.

from a series of images is not necessarily easier than recovering a shape from a
set of curves traced out by the contact points. Often lighting and occlusion are
beyond control of the robot and make the reconstruction problem much harder.
Also, from camera images it is not possible to infer mass properties of the
unknown object. These mass properties are important if we want to manipulate
the object. As we will describe later in this thesis, it is possible to infer these
mass properties from tactile data. Of course, cameras and tactile sensors are
not mutually exclusive. Ideally, the information obtained from all sensors would
be combined to guide the robot. In this thesis we will focus exclusively on the
information that can be extracted from tactile data.

1.2 ProblemStatement
Let a palm be de�ned as a surface covered with tactile sensors. Suppose we have an
unknown smooth convex object in contact with a number of moving palms (two
palms in two dimensions, three in three dimensions); the only forces acting on
the object are gravity and the contact forces. The curvature along the surface of
the object is assumed to be strictly greater than zero, so that we have only one
contact point on each palm. For simplicity we assume that there is no friction.
The central problem addressed in this thesis is the identi�cation of the mapping
from the motion and sensor values of the palms to the local shape, motion, and
mass properties of an unknown object.
Figure 1.1 illustrates the basic idea. There are two palms that each have one

rotational degree of freedom at the point where they connect. That allows us
to change the angle between palm 1 and palm 2 and between the palms and the
global frame. As we change the palm angles we keep track of the contact points
through tactile elements on the palms. We are using touchpads as tactile sensors
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palm 2

palm 1

palm 3

Figure 1.2: An object resting on three palms.

on the palms. In our experiments we found that we can track a contact point on
a touchpad at approximately 0.1mm resolution and at 100Hz. Figure 1.2 shows a
possible arrangement of three palms in three dimensions. Palm 2 and palm 3 are
free to rotate around their line of intersection. This axis is rigidly connected to
palm 1. Palm 1 can rotate around its bottom edge.

1.3 Thesis Outline
In the next chapter we will give an overview of related work. In chapter 3 we
derive the shape and motion of an unknown smooth convex planar object in
frictionless contact with two palms assuming quasistatic dynamics. That is, we
will assume that the palms move slowly enough so that the object is always in
force/torque balance. Another way to think about it is that the object rotates to
minimize potential energy. We take the following approach in reconstructing the
shape. We �rst derive expressions for the local shape at the contact points as a
function of the sensor values, the motion of palms and the motion of the object.
We then solve for the motion of the object by considering the dynamics.
The local shape is represented by the values of the radius function at the contact

points. The radius function returns the projection onto the normal of the vector
from the center of mass to a point on the surface of the object. Although shape
is typically thought of as time invariant, we reparametrize the radius function
with respect to time for each contact point. So for a given t the recovered radius
function returns the values of the radius function at a contact point. The values
of the radius function do not vary arbitrarily. Firstly, the values are constrained
because we assume the object is smooth and convex. Secondly, the rate of change
of the radius function depends on themotion of the object, which in turn depends
on the mass properties. These mass properties are constant.
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The solution for the shape andmotion of the object are in the formof a system
of di�erential equations, so the shape and motion of the object are obtained by
integration of these equations. We demonstrate the feasibility of this approach
with simulations and experimental results. We conjecture that, in general, it is
possible to reconstruct the entire shape. This may seem obvious, but it could
be, for instance, that the robot can only reconstruct one side of the shape and
that it is impossible to reach the other side. To support this conjecture we
analyze the stable orientations in the con�guration space formed by the palm
angles and object orientation. We show that the stable poses generally form a
connected surface, so that there exists a path between any orientation of the
object to any other orientation. The analysis of the stable pose surface gives
rise to an open-loop manipulation strategy that has been used successfully in
simulations. It is possible that the motion of the object has discontinuities, even
if the motion of the palms is continuous. This results in di�erent disconnected
or overlapping pieces of the shape. We will present a method for piecing these
di�erent segments together.

In chapter 4 we will remove the quasistatic dynamics assumption. We will
model the forces and torques exerted by the palms and by gravity. We can then
solve for the acceleration and angular acceleration of the object. By integrating
twice we can then obtain the position of the object at any given time. We will
use results from non-linear control theory to prove observability for the system
formed by the palms and the object. If a system is observable, then it is possible
to correct errors as time progresses. We �rst analyze the general case and then
consider some special cases: (1) moving both palms at the same rate, (2) moving
only one palm, and (3) keeping both palms �xed. We prove that each case is
observable, but in the general case and in case 3 we rely on the e�ects of the
controls to prove observability. There is no general method to construct an
observer for the general case and case 3. We did construct an observer for case 1
and 2. With an observer it is possible to not only detect errors, but also drastically
reduce errors in the state estimate. This means that if the estimate for the initial
conditions for the system of di�erential equations is slightly wrong, an observer
will correct for that. More importantly, it �lters out noise and numerical error
that might otherwise accumulate. The observer we implemented is based on
Newton's method for �nding roots of a function. This observer works well in
simulation.

Chapter 5 describes the generalization of the results in two dimensions to
three dimensions. The same approach carries over to 3D, but there are some
fundamental di�erences. Most importantly, the contact points now trace out
curves on a surface, so it is impossible to create a complete reconstruction of
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the shape in �nite time. We will show that these curves are less constrained
than the contact point curves in 2D. This makes it impossible to construct an
observer within the current framework. Nevertheless, our simulations show that
good results can still be obtained by integrating out the di�erential equations
that describe the shape and motion of a 3D object. Although the system is not
constrained enough to prove observability, we have derived additional constraints
that can be used to minimize an error measure. But since the system is not
observable, there is no guarantee that by minimizing this error measure the state
estimate converges to the true state.
Finally, in chapter 6 we summarize the main contributions of this thesis and

outline di�erent future directions. Speci�cally, we describe how to remove some
of the assumptions we made in this thesis. We also describe ways this work can
be extended to di�erent sensing modalities.
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C h a p t e r 2

Related Work

Our research builds on many di�erent areas in robotics. These areas can be
roughly divided into four di�erent categories: probing, nonprehensile manipu-
lation, grasping, and tactile sensing. We can divide the related work in tactile
sensing further into three subcategories: shape and pose recognition with tactile
sensors, tactile exploration, and tactile sensor design. We now brie�y discuss
some of the research in these areas.

2.1 Probing
Shape sensing can be approached purely geometrically and algorithmically. Sens-
ing is then often called probing. One can de�ne di�erent kinds of probes that
correspond to abstractions of sensor devices. For instance, a �nger probe corre-
sponds to a robotic �ngermoving along a line until it contacts an object (ormisses
the object). The probe outcome is then the point where the probe contacted the
object. Typical questions are:

� How many probes are su�cient to reconstruct the shape of an object?
� How many probes are su�cient to recognize the pose of a known object?

Often these problems are restricted to a class of shapes (such as polygons).
We can relax the questions above by trying to solve for the number of probes
needed for a bounded error approximation of the exact answers. Cole and Yap
(1987) showed that the answer to the �rst question using �nger probes is 3n for
a convex n-sided polygon. Furthermore, they showed that 3n − 1 probes are
necessary. If we assume that a �nger probe outcome is never exactly a vertex
of the polygon, then 3n probes are necessary. Shortly after (Cole and Yap, 1987)
Dobkin et al. (1986) investigated the complexity of determining the shape and
pose of convex polytopes for a variety of di�erent probes, including probes with
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errors. Boissonnat and Yvinec (1992) extended the probe model of Cole and Yap:
their probe outcome includes the normal at the contact point. With this probe
model they showed that at most 3n − 3 probes are needed for simple non-convex
polygons with no collinear edges. Their results can be extended to probe a set of
polygons and to probe a set of polyhedra.
Li (1988) gave algorithms that reconstruct convex polygons with 3n + 1 line

probes or with 3n − 2 projection probes. Line probes slide a straight line in a
particular direction over the plane until it hits the object. Each probe reveals
a tangent line to the object. Projection probes consist of two line probes that
move in opposite directions towards each other. Lindenbaum and Bruckstein
(1994) gave an approximation algorithm for arbitrary planar convex shapes using
line probes. They showed that for an object with perimeter L no more than
O(
√

L/ε log L
ε ) probes are needed to get an approximation error of ε. Kölzow

et al. (1989) presented an approximation algorithm using projection probes, but
their projection probes are de�ned as the length of the intersection of a line
with the object. In (Lindenbaum and Bruckstein, 1991) bounds were given on
the number of parallel probes that are necessary to recover the shape of a planar
polygon. With parallel probes, k probes (k > 1) are performed at the same
time. Skiena (1989) observed that the line probe can be generalized to a new
kind of probe which is the dual of the �nger probe, so that there is a one-to-one
correspondence between algorithms that use �nger probes and ones that use this
generalized line probe.
Rao and Goldberg (1994) studied the problem of determining the shape of a

convex polygon using diameter measurements from a parallel jaw gripper. They
showed that there is an in�nite set of polygonal shapes for a given set of diameter
measurements. However, it is possible to recognize a shape from a known
(�nite) set of shapes. Rao and Goldberg presented sensing plans that require no
more than n measurements, where n is the number of stable faces. Arkin et al.
(1998) proved that �nding a minimal length sensing plan is NP-hard and gave a
polynomial-time approximation algorithm with a good performance guarantee.
Akella andMason (1999) showed how to orient and distinguish (sets of ) polygonal
parts using diameter measurements.
Skiena (1989) described many di�erent probes and many (open) problems in

probing. An overview of research on probing can be found in (Romanik, 1995).

2.2 NonprehensileManipulation
The basic idea behind nonprehensile manipulation is that robots can manipulate
objects even if the robots do not have full control over these objects. This idea

8



was pioneered by Mason. In his Ph.D. thesis (Mason, 1982) and the companion
paper (Mason, 1985) nonprehensile manipulation took the form of pushing an
object in the plane to reduce uncertainty about the object's pose. Further work
by Peshkin and colleagues (Peshkin and Sanderson, 1988; Wiegley et al., 1996)
analyzed the pushing problem and showed how to design fences for a conveyor
belt system. Berretty et al. (1998) proved the conjecture of Wiegley et al. (1996)
that any polygonal part can be oriented by a sequence of fences and presented
an O(n3 log n) algorithm to compute the shortest such sequence. The work
on fence design has recently been generalized to polyhedral objects by Berretty
(2000). Berretty described a system where parts were fed from one conveyor belt
to another, each belt with a sequence of fences. Akella et al. (2000) described a
systemwhere a sequence of fences was replaced with a one joint robot. The robot
was basically a movable fence with one rotational degree of freedom. The robot
could push a part up a conveyor belt and let it drift back. Akella et al. presented an
algorithm that �nds a sequence of pushes to orient a given polygonal part without
sensing. Lynch (1997) further built on Mason's work. In his Ph.D. thesis Lynch
described a path planner for quasistatically pushing objects among obstacles. He
also investigated controllability of dynamic nonprehensile manipulation such as
throwing and catching a part. Lynch et al. (1998) showed how to make a robotic
manipulator perform a certain juggling motion with a suitable parameterization
of the shape and motion of the manipulator. Much research on juggling balls has
been done in Koditschek's research group (see e.g. (Rizzi and Koditschek, 1993)
and (Whitcomb et al., 1993)). Rizzi and Koditschek (1993) described a system
consisting of a robot arm and a camera that can juggle two balls. In (Abell and
Erdmann, 1995) nonprehensile manipulation took the (abstract) form of moving
two frictionless contacts on a polygonal part in a planar gravitational �eld. Abell
and Erdmann presented an algorithm to orient such a polygonal part by moving
the contact points and performing hand-o�s between two pairs of contact points.

Erdmann and Mason (1988) described sensorless manipulation within the
formal framework of the preimage methodology (Lozano-Pérez et al., 1984). In
particular, Erdmann and Mason showed how to orient a planar object by a tray
tilting device: �rst, the object is placed in a randomunknown pose in the tray and,
second, the tray is tilted at a sequence of angles to bring the object in a unique
pose. In (Erdmann et al., 1993) the tray tilting idea was extended to polyhedra.

The pushing and tilting primitives can be formulated as parametrized func-
tions that map orientations to orientations. The parameters of such a function
are then the push direction and the tilt angle, respectively. By composing these
functions one can orient a part without sensing. Eppstein (1990) presented a very
general algorithm that takes a set of functions as input. Given these functions

9



the algorithm computes a shortest sequence of these functions that will orient a
polygonal part. Goldberg (1993) introduced another primitive: squeezing with a
parallel-jaw gripper. By making one jaw compliant in the tangential direction, the
contacts with the part are e�ectively frictionless. Goldberg proved that for every
n-sided polygonal part, a sequence of `squeezes' can be computed in O(n2 log n)
time that will orient the part up to symmetry. The length of such a sequence
is bounded by O(n2). Chen and Ierardi (1995) improved this bound to O(n)
and showed that the algorithm runs in O(n2). (Van der Stappen et al., 2000)
presented improved bounds that depend on the geometric eccentricity (intuitively,
how �fat� or �thin� a part is). Their analysis also applies to curved parts. Recently,
Moll et al. (2002) introduced a new primitive for orientingmicro-scale parts using
a parallel jaw gripper. Moll et al. showed that any polygonal part can be oriented
with a sequence of rollingmotions, where the part is rolled between the two jaws.
With this primitive the gripper does not need to be reoriented.
One of the �rst papers in palmar manipulation is (Salisbury, 1987). Salisbury

suggested a new approach to manipulation in which the whole robot arm is used
as opposed to just the �ngertips. Paljug et al. (1994) investigated the problem
of multi-arm manipulation. Paljug et al. presented a nonlinear feedback scheme
for simultaneous control of the trajectory of the object being manipulated as
well as the contact conditions. Erdmann (1998) showed how to manipulate a
known object with two palms. He also presented methods for determining the
contact modes of each palm: rolling, sliding and holding the object. Zumel (1997)
described a palmar system like the one shown in �gure 1.1(b), but without tactile
sensors. Zumel derived su�cient conditions for orienting known polygonal parts
with these palms. She also showed that an orienting plan for a polygon can be
computed inO(N2) and that the length isO(N), where N is the number of stable
edges of the polygon.
Another way to orient parts is to design a manipulator shape speci�cally for

a given part. This approach was �rst considered for the Sony APOS system
(Hitakawa, 1988). The design was done mainly by ad-hoc trial and error. Later,
Moll and Erdmann (2002) explored a way to automate this process.
In recent years a lot of work has been done on programmable force �elds to

orient parts (Böhringer et al., 2000a, 1999; Kavraki, 1997; Reznik et al., 1999)
The idea is that an abstract force �eld (implemented using e.g. MEMS actuator
arrays) can be used to push the part into a certain orientation. Böhringer et al.
used Goldberg's algorithm (1993) to de�ne a sequence of `squeeze �elds' to orient
a part. They also gave an example how programmable vector �elds can be used
to simultaneously sort di�erent parts and orient them. Kavraki (1997) presented
a vector �eld that induced two stable con�gurations for most parts. In 2000,
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Böhringer et al. proved a long-standing conjecture that the vector �eld proposed
in (Böhringer et al., 1996) is a universal feeder/orienter device, i.e., it induces a
unique stable con�guration for most parts. Recently, Sudsang and Kavraki (2001)
introduced another vector �eld that has the universal feeder property.

2.3 Grasping
The problem of grasping has been widely studied. This section will not try to
give a complete overview of the results in this area, but instead just mention
some of the work that is most important to our problem. Much of the grasp
research focuses on computing grasps that establish force-closure (the ability to
resist external forces) and form-closure (a kinematic constraint condition that
prevents all motion). Important work includes (Salisbury, 1982), (Cutkosky,
1985), (Fearing, 1984), (Kerr and Roth, 1986), (Mishra et al., 1987), (Montana,
1988), (Nguyen, 1988), (Trinkle et al., 1988), (Hong et al., 1990), (Markensco� et al.,
1990), and (Ponce et al., 1997). For an overview of grasp synthesis algorithms see
e.g. (Shimoga, 1996).
To grasp an object one needs to understand the kinematics of contact. Inde-

pendently, Montana (1988) and Cai and Roth (1986, 1987) derived the relationship
between the relativemotion of two objects and themotion of their contact point.
In (Montana, 1995) these results were extended to multi-�ngered manipulation.
Sudsang et al. (2000) looked at theproblemofmanipulating three-dimensional

objects with a recon�gurable gripper. The gripper consisted of two horizontal
plates, of which the top one had a regular grid of actuated pins. They presented
a planner that computed a sequence of pin con�gurations that brought an object
from one con�guration to another using so-called immobility regions. For each
(intermediate) con�guration only three pins were needed. Plans were restricted
to ones where the object maintains the same set of contact points with the bot-
tom plate. Rao et al. (1994, 1995) showed how to reorient a polyhedral object
with pivoting grasps: the object was grasped with two hard �nger contacts so that
it pivoted under gravity when lifted. Often only one pivot grasp was su�cient to
bring the object from one stable pose to another (provided the friction coe�cient
was large enough).
Trinkle and colleagues (Trinkle et al., 1993; Trinkle and Hunter, 1991; Trinkle

and Paul, 1990; Trinkle et al., 1988) investigated the problem of dexterous ma-
nipulation with frictionless contact. They analyzed the problem of lifting and
manipulating an object with enveloping grasps. Kao and Cutkosky (1992) and
Yoshikawa et al. (1993) did not assume frictionless contacts. Whereas Kao and
Cutkosky focused on modeling sliding contact with compliance, Yoshikawa et al.
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showed how to regrasp an object using quasistatic slip motion. Nagata et al.
(1993) described a method of repeatedly regrasping an object to build up a model
of its shape.
Grupen and Coelho Jr. (1993; 1996) proposed an on-line grasp synthesis

method for a robot hand equipped with sensors. The controllers of the hand
used sensor data to re�ne a grasp. Teichmann and Mishra (2000) presented an
algorithm that determines a good grasp for an unknown object using a parallel-
jaw gripper equipped with light beam sensors. This paper also presented a tight
integration of sensing andmanipulation. Interestingly, the object is not disturbed
until good grasp points are found.
Erdmann (1995) proposed a method for automatically designing sensors from

the speci�cation of the robot's task. Erdmann gives the example of grasping
an ellipse. By sensing some aspect of the local geometry at the contact points,
it is possible to de�ne a feedback loop that guides the �ngers toward a stable
grasp. Recently, Jia (2000) extended these results and showed how to achieve an
antipodal grasp of a curved planar object with two �ngers. By rolling the �ngers
around the object the pose of the object is determined and then the �ngers are
rolled to two antipodal points.

2.4 Shape and Pose Recognition
The problem of shape and pose recognition can be stated as follows: suppose we
have a known set of objects, how can we recognize one of the objects if it is in
an unknown pose? For an in�nite set of objects the problem is often phrased as:
suppose we have a class of parametrized shapes, can we establish the parameters
for an object from that class in an unknown pose? Schneiter and Sheridan (1990)
and Ellis (1992) developed methods for determining sensor paths to solve the �rst
problem. In Siegel (1991) a di�erent approach is taken: the pose of an object is
determined by using an enveloping grasp. This method uses only joint angle and
torque sensing.
Grimson and Lozano-Pérez (1984) used measurements of positions and sur-

face normals to recognize and locate objects from among a set of known polyhe-
dral objects. They phrased the recognition problem as a constraint satisfaction
problem using an interpretation tree. Interpretation trees were introduced by
Gaston and Lozano-Pérez (1984) as a way to match sets of contact points with
edges of an object.
Kang and Goldberg (1995) used a Bayesian approach to recognizing arbitrary

planar parts from a known set. Their approach consists of randomly grasping
a part with a parallel-jaw gripper. Each grasp returns a diameter measurement,
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which can be used to update a probability for each part in the set of known parts.
Using a statistical measure of similarity it is possible to predict the expected
number of grasps to recognize a part.
Jia and Erdmann (1996) proposed another `probing-style' solution: they de-

termined possible poses for polygons from a �nite set of possible poses. One
can think of this �nite set as the stable poses (for some sense of stable). One
method determines the pose by bounding the polygon by supporting lines. The
second method they propose is to sense by point sampling. They prove that solv-
ing this problem is NP-complete and present a polynomial time approximation
algorithm.
Keren et al. (1998) proposed a method for recognizing three-dimensional

objects using curve invariants. This idea was motivated by the fact that tactile
sensor data often takes the form of a curve on the object. They apply their
method to geometric primitives like spheres and cylinders.
Jia and Erdmann (1999) investigated the problem of determining not only the

pose, but also the motion of a known object. The motion of the object is induced
by having a robotic �nger push the object. By tracking the contact point on the
�nger, they were able to recover the pose and motion using nonlinear observer
theory.

2.5 Tactile ShapeReconstruction
With tactile exploration the goal is to build up an accurate model of the shape of
an unknown object. One early paper by Goldberg and Bajcsy (1984) described a
system requiring very little information to reconstruct an unknown shape. The
system consisted of a cylindrical �nger covered with 133 tactile elements. The
�nger could translate and tap di�erent parts of an object.
Often the unknown shape is assumed tobe amember of a parametrized class of

shapes, so one could argue that this is really just shape recognition. Nevertheless,
with some parametrized shape models, a large variety of shapes can still be
characterized. In (Fearing, 1990), for instance, results are given for recovering
generalized cylinders. Allen and Roberts (1989) model objects as superquadrics.
Roberts (1990) proposed a tactile exploration method for polyhedra. In (Chen
et al., 1996) tactile data are �t to a general quadratic form. Finally, Liu and
Hasegawa (2001) use a network of triangular B-spline patches.
Allen (1988) presents a tight integration of vision and tactile sensing. The

vision processing provides an estimate of the shape of areas of interest, which are
then further explored by a tactile sensor. Allen presents a procedure for robustly
integrating noisy visual and tactile data into 3D surface and feature primitives.
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Allen andMichelman (1990) presented methods for exploring shapes in three
stages, from coarse to �ne: grasping by containment, planar surface exploring
and surface contour following. Montana (1988) described a method to estimate
curvature based on a number of probes. Montana also presented a control law for
contour following. Charlebois et al. (1996, 1997) introduced two di�erent tactile
exploration methods. The �rst method is based on rolling a �nger around the
object to estimate the curvature using Montana's contact equations. Charlebois
et al. analyze the sensitivity of this method to noise. With the second method
a B-spline surface is �tted to the contact points and normals obtained by sliding
multiple �ngers along an unknown object.
Marigo et al. (1997) showed how to manipulate a known polyhedral part by

rolling it between the two palms of a parallel-jaw gripper. Bicchi et al. (1999)
extended these results to tactile exploration of unknown objects with a parallel-
jaw gripper equipped with tactile sensors. The two palms of the gripper roll
the object without slipping and track the contact points. Using tools from
regularization theory they produce spline-like models that best �t the sensor
data. The work by Bicchi and colleagues is di�erent from most other work on
tactile shape reconstruction in that the object being sensed is not immobilized.
With our approach the object is not immobilized either, but whereas Bicchi and
colleagues assumed pure rolling we assume pure sliding.
A di�erent approach is taken by Kaneko and Tsuji (2001), who try to recover

the shape by pulling a �nger over the surface. With this �nger they can also probe
concavities. In (Okamura and Cutkosky, 1999; Okamura et al., 1999; Okamura
and Cutkosky, 2001) the emphasis is on detecting �ne surface features such as
bumps and ridges. Sensing is done by rolling a �nger around the object. (Okamura
et al., 1999) show how one can measure friction by dragging a block over a surface
at di�erent velocities, measure the forces and solve for the unknowns. This
work builds forth on previous work by Cutkosky and Hyde (1993), who propose
an event-driven approach to dextrous manipulation. During manipulation of
an object there are several events that can be detected with tactile sensing.
Examples of such events are: making and breaking contact, slipping, change in
friction, texture, sti�ness, etc. Based on these events it is possible to infer some
of the object's properties (such as its shape and mass distribution) and adjust the
grasp.
Much of our work builds forth on (Erdmann, 1999). There, the shape of planar

objects is recognized by three palms; two palms are at a �xed angle, the third
palm can translate compliantly, ensuring that the object touches all three palms.
Erdmann derives the shape of an unknown object with an unknown motion as a
function of the sensor values. In our work we no longer assume that the motion
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Figure 2.1: Related work in tactile shape reconstruction.

of the object is completely arbitrary. Instead, we model the dynamics of the
object as it is manipulated by the palms. Only gravity and the contact forces are
acting on the object. As a result we can recover the shape with fewer sensors.
By modeling the dynamics we need one palm less in 2D. In the 3D case, instead
of six palms, we need only three. Figure 2.1 shows where our research �ts within
the �eld of tactile shape reconstruction. In the long term we plan to develop a
uni�ed framework for reconstructing the shape and motion of unknown object
with varying contact modes.

2.6 Tactile SensorDesign
Despite the large body of work in tactile sensing and haptics, making reliable and
accurate tactile sensors has proven to be very hard. Many di�erent designs have
been proposed. This section will mention just a few. For an overview of sensing
technologies, see e.g. (Lee, 2000), (Howe and Cutkosky, 1992) and (Nicholls and
Lee, 1989). Fearing and Binford (1988) describe a cylindrical tactile sensor to
determine the curvature of convex unknown shapes. Russell (1992) introduces
so-called whisker sensors: curved rods, whose de�ection is measured with a
potentiometer. Kaneko and Tsuji (2001) have developed planning algorithms to
recover the shape of an object with such whiskers. Speeter (1990) describes a
tactile sensing system consisting of up to 16 arrays of 256 tactile elements that
can be accessed in parallel. He discusses the implementation issues involved
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with using these sensors with the Utah/MIT Hand. The underlying tactile
technology is based on force sensing resistors from Interlink Electronics. Choi
et al. (1998) present a di�erent design for tactile sensors for multi�ngered robots
based on capacitive tactile elements. They compare their experimental results
with Montana's contact equations (Montana, 1988).
Ando and Shinoda (1995) describe a tactile sensor based on ultrasonic emis-

sion. Their system consists of a �exible spherical �ngertip and a sound sensor at
the center of the �ngertip. Contact points act as emission sources and the sensor
works as a direction-sensitive, wideband acoustic emission transducer. Although
the error in the position estimate of the contacts can be as large as a few millime-
ters, with this sensor one can distinguish multiple contacts, which is impossible
with most other sensor technologies.
There is also a fair amount of research on compliant tactile sensors. A

compliant tactile sensor deforms to take on the local object shape. An obvious
advantage of this approach is that instantaneously the sensor recovers an entire
patch of an object as opposed to just one contact point. One idea is to use
an optical waveguide to create an image of the pressure distribution over the
sensor surface (Maekawa et al., 1993, 1997; Kinoshita et al., 1999). The light of
an internal light source re�ects on the inside of the sensor surface. Deformation
causes the light to refract di�erently, which is detected by a camera inside the
sensor. It is possible to infer the contact points from the camera image. Hristu
et al. (2000) use a slightly di�erent approach. Their deformable sensor surface is
painted on the inside with a pattern of dots. From a camera image of these dots
it is possible to infer the deformation of the surface. (Shinoda and Oasa, 2000)
describe an elastic skin in which many sensing elements are embedded. These
elements are resonator chips whose frequency re�ects the stress around the chip.
The resonant frequency is read out by a ground coil under the skin. Finally,
Teramoto and Watanabe (2000) combine a deformable `skin' with an acoustic
sensor array. This sensor array uses acoustic transceivers to measure the shape of
the skin (and the shape of the object touching the skin) from the inside.
In our own experiments we are relying on o�-the-shelf components. The tac-

tile sensors are touchpads from Interlink Electronics (http://www.interlinkelec.
com), as found on many notebooks. Most touchpads use capacitive technology,
but the ones we are using are based on force-sensing resistors. These touchpads
return the centroid of contact, have a resolution of approximately 0.1mm and
report readings at a frequency of 100Hz. This technology has already success-
fully been used before as a tactile sensor (Mingrino et al., 1994; Liu et al., 1995;
Jockusch et al., 1997).
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C h a p t e r 3

Quasistatic Shape Reconstruction

In this chapter we will present a quasistatic method for reconstructing the local
shape of an unknown smooth convex object. By `local shape' we mean the shape
of the object at the contact points. The object is placed between the two palms,
and we can vary the angles between the palms and the world frame. The object
will move as a result of the contact forces and gravity acting on it. We say that
the object is in force/torque balance if and only if all forces and torques acting on
the object add up to 0. Below, we will show that if we assume that the object is
always in force/torque balance and if there is no friction between the object and
the palms, then we can reconstruct the local shape with two palms.
Figure 3.1 shows the two inputs and the two sensor outputs. The inputs are

O
φ1

s2

X

Y

palm 2

contact point 1

contact point 2
palm 1

gravity
s1

φ2

cr

cm

Figure 3.1: Inputs and outputs of the system formed by the palms and the
object. Input values are φ1 and φ2, output values are the contact point locations
s1 and s2. The contact normals intersect at the center of rotation (cr), which lies
on the vertical line through the center of mass (cm).
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Figure 3.2: The contact support function (r(θ), d(θ)) and the object frame. OX
denotes the X-axis of the object frame.

φ1, the angle between palm 1 and the X-axis of the global frame, and φ2, the angle
between palm 1 and 2. The tactile sensor elements return the contact points s1
and s2 on palm 1 and 2, respectively. Gravity acts in the negative Y direction. If
the object is at rest, there is force/torque balance. In that case, since we assume
there is no friction, the lines through the normal forces at the contact points
and gravity acting on the center of mass intersect at a common point. In other
words, the sensor values tell us where the X-coordinate of the center of mass is
in the global frame. Below we will show that this constraint on the position of
the center of mass and the constraints induced by the sensor values will allow us
to derive an expression for the curvature at the contact points. However, this
expression depends on the initial position of the center of mass. We can search
for this position with an initial pose observer that minimizes the error between
what the curvature expression predicts and what the sensor values tell us.

3.1 Notation

Frames We assume that the object is smooth and convex. We also assume
that the origin of the object frame is at the center of mass, and that the center of
mass is in the interior of the object. For every angle θ there exists a unique point
x(θ) on the surface of the object such that the outward pointing normal n(θ)
at that point is (cos θ, sin θ)T. This follows from the convexity and smoothness
assumptions. Let the tangent t(θ) be equal to (sin θ,− cos θ)T so that [t, n]
constitutes a right-handed frame. Figure 3.2 shows the basic idea. We can also
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de�ne right-handed frames at the contact points with respect to the palms:

n̄1 =
(
− sin φ1, cos φ1

)T

t̄1 =
(

cos φ1, sin φ1
)T

and

n̄2 =
(

sin(φ1 + φ2),− cos(φ1 + φ2)
)T

t̄2 =
(
− cos(φ1 + φ2),− sin(φ1 + φ2)

)T

Note that n̄1 and n̄2 point into the free space between the palms. Let φ0 be the
angle between the object frame and the global frame, such that a rotation matrix
R(φ0) maps a point from the object frame to the global frame:

R(φ0) =
(

cos φ0 − sin φ0
sin φ0 cos φ0

)
The object and palm frames are then related in the following way:(

n̄1 t̄1
)

= −R(φ0)
(
n(θ) t(θ)

)(
n̄2 t̄2

)
= −R(φ0)

(
n(θ + φ2 − π) t(θ + φ2 − π)

)
The di�erent frames are shown in �gure 3.3. From these relationships it follows
that

θ = φ1 − φ0 − π
2 (3.1)

Di�erentiation We will use `˙' to represent di�erentiation with respect to
time t and `′' to represent di�erentiation with respect to a function's parameter.
So, for instance, ẋ(θ) = x′(θ)θ̇. Let v(θ) = ‖x′(θ)‖ be the parameterization
velocity of the curve x. We can write v(θ) as−x′(θ) · t(θ) and x′(θ) as−v(θ)t(θ).
The curvature κ(θ) is de�ned as the turning rate of the curve x(θ). For an

arbitrary curve x the following equality holds (Spivak, 1999a):

t′(θ) = κ(θ)v(θ)n(θ) (3.2)

In our case we have that t′(θ) = n(θ) so it follows that the parameterization
velocity v(θ) is equal to the radius of curvature 1

κ(θ) at the point x(θ).
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Figure 3.3: The di�erent coordinate frames.

Support Functions The radius function is a useful tool for recovering the
shape of an object (see e.g. (Santaló, 1976)). We de�ne r(θ) to be the projection
of the contact point x(θ) onto the normal n(θ):

r(θ) = x(θ) · n(θ)

This function is called a radius function or support function. For our shape recovery
analysis it will be useful to de�ne another function, d(θ), to be the projection of
the contact point x(θ) onto the tangent t(θ):

d(θ) = x(θ) · t(θ)

We will refer to the pair (r(θ), d(θ)) as a contact support function. The goal is now
to derive a solution for x(θ) as we change the palm angles φ1 and φ2. As we will
see below, it is actually su�cient to derive a solution for r(θ). We will derive a
solution for ṙ(t) = r′(θ)θ̇, which we can integrate to obtain a solution for r(θ).
One �nal bit of notation we need is a generalization of the contact support

function, which we will de�ne as a projection of the vector between the two
contact points. We de�ne the generalized contact support function relative to contact
point 1 as:

r̃1(θ) =
(
x(θ)− x(θ + φ2 − π)

)
· n(θ) (3.3)

d̃1(θ) =
(
x(θ)− x(θ + φ2 − π)

)
· t(θ) (3.4)
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Figure 3.4: The generalized contact support functions.

Similarly, we can de�ne the generalized contact support function relative to contact point 2
as:

r̃2(θ) =
(
x(θ)− x(θ + φ2 − π)

)
· n(θ + φ2 − π) (3.5)

d̃2(θ) =
(
x(θ)− x(θ + φ2 − π)

)
· t(θ + φ2 − π) (3.6)

Below we drop the function arguments where it does not lead to confusion, and
instead use subscripts `0', `1' and `2' to refer to the center of mass of the object,
the contact point on palm 1, and the contact point on palm 2, respectively. So we
will write e.g. R0n2 for R(φ0)n(θ + φ2 − π).
The generalized contact support functions have the property that they can

be expressed directly in terms of the palm angles and sensor values (assuming the
object is in two-point contact):{

r̃1 = s2 sin φ2

d̃1 = s2 cos φ2 − s1
or

{
r̃2 = −s1 sin φ2

d̃2 = s1 cos φ2 − s2
(3.7)

These equalities can be obtained by inspection from �gures 3.1 and 3.4. We
can also obtain these equalities analytically. First, we write the constraints that
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two-point contact induces as

s1t̄1 = cm + R0x1 (3.8)
−s2t̄2 = cm + R0x2, (3.9)

where cm is the position of the center of mass. Next, we can eliminate cm from
these equations and write

R0 (x1 − x2) = s1t̄1 + s2t̄2 (3.10)

The expressions in 3.7 then follow by computing the dot product on both sides
of expression 3.10 with the palm normals and tangents:

r̃1 = (x1 − x2) · n1 = R0(x1 − x2) · R0n1 = −(s1t̄1 + s2t̄2) · n̄1

= s2 sin φ2 (3.11)
d̃1 = (x1 − x2) · t1 = −(s1t̄1 + s2t̄2) · t̄1 = s2 cos φ2 − s1 (3.12)
r̃2 = (x1 − x2) · n2 = −(s1t̄1 + s2t̄2) · n̄2 = −s1 sin φ2 (3.13)
d̃2 = (x1 − x2) · t2 = −(s1t̄1 + s2t̄2) · t̄2 = s1 cos φ2 − s2 (3.14)

Abovewehave shown that although the generalized contact support functions
were de�ned in the object frame, we can also express them directly in terms of
sensor values and palm angles. This is useful because it can be shown (Erdmann,
1999) that the radii of curvature at the contact points can be written in terms of
the generalized contact support functions as

v1 = −
r̃′2 + d̃2

sin φ2
(3.15)

v2 = −
r̃′1 + d̃1

sin φ2
(3.16)

The derivation of these expressions is included in the appendix. Note that
these expressions are not su�cient to observe the local shape, even though the
generalized support functions are directly observable. To observe the shape we
will also need an expression for the time derivative of the function parameters.
This is the topic of section 3.3.
Equation 3.10 can also be rewritten in terms of the contact support function:

−(r1n̄1 + d1t̄1) + (r2n̄2 + d2t̄2) = s1t̄1 + s2t̄2 (3.17)
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Figure 3.5: The dependencies between sensor values, the support function and
the angle between the palms when the object makes two-point contact.

Solving this constraint for d1 and d2 we get:

d1 =
r1 cos φ2 + r2

sin φ2
− s1 (3.18)

d2 = −r2 cos φ2 + r1

sin φ2
+ s2 (3.19)

See also �gure 3.5. Note that by construction r′(θ) = x′(θ) · n(θ) + x(θ) · t(θ) =
−d(θ). So a solution for r(θ) can be used in two ways to arrive at a solution for
d(θ): (1) using the property d(θ) = −r′(θ) of the radius function, or (2) using
expressions 3.18 and 3.19. In other words, to recover the shape it is su�cient to
reconstruct the radius function.

3.2 AGeometric Interpretation of
Force/Torque Balance

Before deriving the equations for the local shape of the object as a function of
the palm angles and sensor values, let us �rst consider the dynamics of the system
formed by the palms and the object. We assume the dynamics are quasistatic,
which means that all the forces and torques balance each other. A necessary and
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su�cient condition for force/torque balance is that the lines through the contact
points along the contact forces and the line through the center of mass along the
gravity vector intersect at one point called the center of rotation (see �gure 3.1). If
we move the palms the object will instantaneously rotate around the center of
rotation. The lines through the normals can be described by:

`1 : q1 7→ s1t̄1 + q1n̄1 (3.20)
`2 : q2 7→ −s2t̄2 + q2n̄2 (3.21)

These lines intersect if and only if

q1 =
s2 − s1 cos φ2

sin φ2
and q2 =

s1 − s2 cos φ2

sin φ2
.

Using the generalized contact support functions we can simplify this to q1 =
−d̃2/ sin φ2 and q2 = −d̃1/ sin φ2. So we can write the following equations for
the center of mass, cm, and the center or rotation, cr:

cm(φ0, φ1, φ2) = s1t̄1 − R0x1

= −r̃2t̄1/ sin φ2 − R0x1 (3.22)
cr(φ0, φ1, φ2) = s1t̄1 + q1n̄1

= s1t̄1 − d̃2n̄1/ sin φ2

= −(r̃2t̄1 + d̃2n̄1)/ sin φ2 (3.23)

In appendix A.1 it is shown that the partial derivatives of cm and cr can be written
as

∂cm

∂φ0
= − d̃2t̄1

sin φ2
−
( ∂

∂φ0
R0

)
x1, (3.24)

∂cr

∂φ0
= −

(
v1n̄2 − v2n̄1 − r̃2n̄1 + d̃2t̄1

)
/ sin φ2. (3.25)

and that we can rewrite equation 3.24 as a function of the relative distance
between the center of mass and the center of rotation:

∂cm

∂φ0
=
(

0 −1
1 0

)
(cm − cr) . (3.26)

This last equation should not surprise us. It says that instantaneously the center
of mass rotates around the center of rotation, which is true by de�nition for any
point on the object.
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With the results above we can easily describe all the stable poses of an object.
We de�ne a stable pose as a local minimum of the potential energy function with
respect to φ0. The potential energy of an object in two-point contact with the
palms is simply the Y coordinate of cm, which can be written as cm ·

(
0
1

)
. At a

local minimum the �rst derivative with respect to φ0 of this expression will be
equal to 0. We can write this condition using equation 3.26 as (cm − cr) ·

(
1
0
)

= 0.
In other words, at the minima of the potential energy function the X coordinates
of cm and cr have to be equal. Since we assume that the object is always in
force/torque balance and, hence, at a minimum of the potential energy function,
we can directly observe the X coordinate of the center of mass. Or, equivalently,
we can directly observe the projection onto the X-axis of the vector from the
center of mass to contact point 1 by using expressions 3.22 and 3.23:

(cm − cr) ·
(

1
0
)

= 0

⇒
(
− r̃2t̄1/ sin φ2 − R0x1 + (r̃2t̄1 + d̃2n̄1)/ sin φ2

)
·
(

1
0
)

= 0

⇒ (R0x1) ·
(

1
0
)

= −d̃2
sin φ1
sin φ2

(3.27)

For a local minimum of the potential energy function the Y coordinate of the
second partial derivative of cm with respect to φ0 has to be greater than 0, i.e.,

∂
∂φ0

(
(cm − cr) ·

(
1
0
) )

> 0.

3.3 Recovering Shape

We can write the derivative ẋ(θ) of the function x(θ) that describes the shape as
θ̇v(θ)t(θ). So if we can solve for θ̇, v(θ) and the initial conditions, we can �nd the
shape by integrating ẋ. Recall that θ is a curve parameter, so θ̇ is in general not
equal to the rotational velocity of the object. We can obtain a simple relationship
between θ̇ and φ̇0 by di�erentiating equation 3.1:

θ̇ = φ̇1 − φ̇0 (3.28)

Since we know φ̇1 solving for θ̇ is equivalent to solving for φ̇0. In other words, if
we can observe the curvature at the contact points and the rotational velocity of
the object, we can recover the shape of an unknown object. By di�erentiating the
generalized support functionswith respect to time, we can rewrite expressions 3.15
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and 3.16 for the radii of curvature at the contact points as

v1 = −
˙̃r2 + (θ̇ + φ̇2)d̃2

θ̇ sin φ2
(3.29)

v2 = −
˙̃r1 + θ̇d̃1

(θ̇ + φ̇2) sin φ2
(3.30)

See appendix A.1 for details. So to observe the curvature at the contact points,
we need to derive an expression for the rotational velocity of the object that
depends only on palm angles, sensor values and their derivatives. Note that we
can not observe the curvature at the contact point 1 or contact point 2 if θ̇ = 0 or
θ̇ + φ̇2 = 0, respectively. If we can not observe the curvature at a contact point,
that point is instantaneously not moving in the object frame.
We can recover the rotational velocity by looking at the constraint the force/

torque balance imposes on the motion of the object. Recall equation 3.27:

(R0x1) ·
(

1
0
)

= −d̃2
sin φ1
sin φ2

(3.31)

The left-hand side of this equation can be rewritten as

(R0x1) ·
(

1
0
)

= (R0(r1n1 + d1t1)) ·
(

1
0
)

(3.32)
= r1 sin φ1 − d1 cos φ1 (3.33)

This expression (implicitly) depends on the orientation of the object. In ap-
pendix A.1 it is shown how by di�erentiating this expression and the right-hand
side of equation 3.31 we can obtain the following expression for the rotational
velocity of the object:

φ̇0 =
˙̃r2 cos φ1 − ˙̃d2 sin φ1 + d̃2φ̇2

sin φ12
sin φ2

r1 sin φ12 + (r2 + r̃2) sin φ1 + d̃2 cos φ1
, (3.34)

where φ12 = φ1 + φ2. This expression for φ̇0 depends on the control inputs,
the sensor values, their derivatives and the current values of radius function at
the contact points. The system of di�erential equations describing the (sensed)
shape and motion can be summarized as follows:

ṙ1 = −d1(φ̇1 − φ̇0) (3.35)
ṙ2 = −d2(φ̇12 − φ̇0) (3.36)

φ̇0 =
˙̃r2 cos φ1 − ˙̃d2 sin φ1 + d̃2φ̇2

sin φ12
sin φ2

r1 sin φ12 + (r2 + r̃2) sin φ1 + d̃2 cos φ1
(3.37)
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The �rst two equations describe the rate of change of the radius function at
the contact points. The radius function uniquely de�nes the shape of the object.
Equation 3.37 describes the motion of the object. If the object remains in contact
with both palms, it has only one degree of freedom. So knowing just the rotational
velocity is su�cient.
So far we have assumed that we have sensor data that is continuous and

without any error. In practice sensors will be discrete, both in time and space,
and there will also be errors. We would like to recover the shape of an unknown
object in such a setting as well. There are two main directly observable error
terms at each time step. First, one can check the error in the force/torque balance
constraint (equation 3.31). Let that error be denoted by e f . So at a given time t,
e f (t) is equal to

e f (t) =
(
(R0(φ̂0)x̂1) ·

(
1
0
)

+ d̃2
sin φ1
sin φ2

)
, (3.38)

where `̂ ' denotes the estimated value of a variable. The second observable error
is the error in the two-point contact constraint (equation 3.10). Let this error be
denoted by ec. In other words,

ec(t) =
(

R0(φ̂0)(x̂1 − x̂2)− s1t̄1 − s2t̄2
)

(3.39)

Our program searches for the initial conditions of our system by minimizing the
sum of all directly observable errors.
In our current implementationwe use a fourth-orderAdams-Bashforth-Moul-

ton predictor-corrector method to integrate equations 3.35�3.37. Let the state be
de�ned as the vector (r1, r2, φ0)T. In the prediction step the state at time t − 1
and derivatives at time t− 3, t− 2, and t− 1 are used to predict the state at time
t. In the correction step, we use the state estimate at t − 1 and derivatives at
t− 3, . . . , t to re�ne the state estimate at time t. The correction step is repeated
until the relative change in the estimate is below a certain threshold or if a
maximum number of iterations has been reached. This high-order method tends
to �lter out most of the noise and numerical errors. In our simulation results
hardly any error accumulates during integration (see section 3.4).

3.4 SimulationResults
The results in this section are based on numerical simulation in Matlab. We
generate random test shapes in the following way. We pick three numbers q1,
q2, and q3 independently and uniformly random from the interval [0.1, 2.5]. A
random shape is generated by computing a closed spline interpolation of the
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points with polar coordinates (0, q1), (2
3 π, q2) and (4

3 π, q3). Figure 3.6 shows
an example of the shape reconstruction process. 270 measurements were used
to reconstruct the shape. In each frame the part of the shape that has been
observed up to that point in time is shown. Also drawn are the contact points,
the center of mass, and the palms. Notice how the (observed) shape sometimes
intersects the palms. This means that there is a con�ict between the currently
observed shape and the previously observed shape, which could potentially be
used to guide the search for initial conditions. The motion of the palms is open-
loop. Initially palm 1 and palm 2 are nearly horizontal; the object is squeezed (but
without friction!) between the palms. The motion of the palms can roughly be
described as a sequence of squeeze-and-rotate motions andmotions where one of
the palms stays put and the other palm opens up. Notice how in the penultimate
frame the simulator misgauges the shape, but has recovered in the last frame.
In �gure 3.7 the di�erences are shown between the reconstructed and actual

shape and motion of the object. We de�ned the object frame to be located at the
center of mass. From the force/torque balance constraint we can solve for this
position. The relative orientation of the object frame with respect to the world
frame is arbitrary. We just assume that the initial orientation is 0◦ and use SVD
to align the orientation of the generating shape and the observed shape (Golub
and Loan, 1996, p. 601).
One can not directly observe the errors in φ̇0 and φ0, but one can observe the

error in the X-coordinate of the center of mass and the error in the two-point
contact constraint. These errors are shown in �gure 3.8. Note that the big errors
in error plot 3.8(d) occur at the same times as when the rotational speed of the
object was misgauged. This suggests that our system could at least detect where
the observed shape will be wrong. It is possible that the system could even detect
that such a situation is approaching and maybe even prevent it by changing the
motion of the palms. Also, the error in the norm of the contact point vector is
very small, but does not appear to be completely random, suggesting that there
is still room for improvement in the integration step.
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 t=0.03  t=0.07  t=0.11  t=0.14

 t=0.18  t=0.22  t=0.26  t=0.29

 t=0.33  t=0.37  t=0.41  t=0.44

 t=0.48  t=0.52  t=0.55  t=0.59

 t=0.63  t=0.67  t=0.70  t=0.74

 t=0.78  t=0.81  t=0.85  t=0.89

 t=0.93  t=0.96  t=1.00

Figure 3.6: The frames show the reconstructed shape after 10, 20,. . . ,270 mea-
surements. The three large dots indicate the center of mass and the contact
points at each time, the smaller dots show the part of the shape that has been
reconstructed at that time.
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shape.
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radius function (in mm).
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(c) The actual and observed orientation of
the object.
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(d) The actual and observed rotational ve-
locity of the object.

Figure 3.7: The di�erences between the actual and observed shape.
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Figure 3.8: The observable error for the reconstructed shape.
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(a) The contact point of a marble being rolled on a touchpad.
X and Y are measured in `tactels.'
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(b) The speed at which measurements are reported. The aver-
age time betweenmeasurements is 0.010 seconds, the standard
deviation is 0.0050.

Figure 3.9: Resolution and sensing frequency of the VersaPad.
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Figure 3.10: Setup of the palms.

3.5 Experimental Results
The tactile sensors we are using are touchpads made by Interlink Electronics
(http://www.interlinkelec.com). These touchpads are most commonly used in
notebook computers. They use so-called force sensing resistors to measure the
location and the applied pressure at the contact point. One of the advantages of
this technology, according to Interlink, is that it does not su�er as much from
electrostatic contamination as capacitance-based touchpads. If there is more
than one contact point, the pad returns the centroid. The physical pad has
a resolution of 1000 counts per inch (cpi) in the X and Y direction, but the
�rmware limits the resolution to 200 cpi. It can report 128 pressure levels, but
the pressure readings are not very reliable. In our experiments we only used
the coordinates of the contact point and ignored the pressure data. The pad
measures 55.5 × 39.5mm2. Sensor data can be read out through a rs232 serial
port connection.
Figure 3.9 shows the results of a simple test to establish the feasibility of

the touchpad. The test consisted of rolling a marble around on the touchpad
and tracking the contact point. Figure 3.9(a) shows the `curve' traced out by the
contact point. Figure 3.9(b) shows how fast we can get sensor readings from the
touchpad. Notice how the times between measurements are roughly centered
around 3 bands. This could be related to the way our driver polls the touchpad
for data; further tweaking might increase the speed at which measurements are
reported.
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Figure 3.11: Experimental setup.

For the actual palms, we are using an Adept scara-type arm to control two
planar surfaces connected with hinges. The Adept robot arm holds the endpoint
of one palm. The endpoint of the other palm is attached to a �xed base. Fig-
ure 3.10 shows the basic idea (not to scale). The touchpads are mounted on the
two surfaces and connected to a pc. It is important to realize that this experi-
mental setup is just meant to be a proof of concept. Mechanically the sensing
mechanism can be much simpler. More importantly, the palms do not need to
be connected at all: the analysis only depends on the relative angle between the
palms and the world. So in theory our proposed sensing strategies can also be
applied to a robot hand equipped with tactile sensors. Our actual experimental
setup is shown in �gure 3.11. The white arrows on the object and the palms
are tracked by an Adept vision system to establish `ground truth', which can be
compared with the shape and motion inferred from the tactile data.
Figures 3.12(a) and 3.12(b) show the reconstructed shape and motion, respec-

tively. The observed motion is far from perfect, but the observed shape comes
close to the actual shape. This seems to suggest that the system of di�erential
equations 3.35�3.37 is fairly stable in this case, i.e., the errors in themotion did not
cause the radius function to shoot o� to in�nity. The palms made back-and-forth
motions to cover the shape several times. This means that we can prune those
parts of the reconstructed shape that have been touched only once. For instance,
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Figure 3.12: Experimental results.

in �gure 3.12(a) we can eliminate the sparse point distribution in the top right
and bottom middle. To determine which parts to eliminate one can draw a curve
interpolating the points

(
ti, r(θ(ti))

)
, i = 1, . . . The points we can eliminate are

those for which
(
ti, r(θ(ti))

)
is the only intersection with the line t = ti.

3.6 Global Observability

In the previous sections we showed that the curvature at the contact points and
themotion of the object can be expressed as a function of themotion of the palms
and the sensor values. By integrating out these expressions we can reconstruct
a part of the shape. An important open problem is whether it is possible to
reconstruct the entire shape. In this section we conjecture that, in general, it is
possible. This is not immediately obvious. It could be, for instance, that the
robot can only reconstruct one side of the shape and that it is impossible to reach
the other side. To answer the question of global observability it will be useful to
consider the motion of the center of mass and the center of rotation relative to
each other. For a pose to be stable the object needs to be at a local minimum
of the potential energy function. Recall from section 3.2 the two conditions that
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φ1 = 0

φ1 + φ2 = π
outside boundary

inside boundary

φ2 = 0

φ1

φ2

φ0

(a) The stable pose surface in con�guration space

(b) The generating object shape

Figure 3.13: Stable poses for a particular shape. Note that only one 2π period
of φ0 is shown in (a) and the surface extends from −∞ to ∞ in the φ0 direction,
i.e., the inside and outside boundary do not meet.

have to hold for a stable pose:

(cm − cr) ·
(

1
0

)
= 0, (3.40)

∂

∂φ0

(
(cm − cr) ·

(
1
0

) )
= 0. (3.41)
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The stable poses induce a two-dimensional subset of the (φ1, φ2, φ0)-con�gura-
tion space. Figure 3.13 shows all the stable poses for a given shape. These stable
con�gurations form a spiraling surface. From �gure 3.13 it follows that for this
particular shape it is indeed possible to reconstruct the entire shape, because
there exists a path on the surface of stable con�gurations between any two stable
con�gurations. We suspect that this is true in general. Although we do not have
a complete proof for it, we will give some intuition for the following conjecture:

For any smooth convex shape there exists a surface of stable con�gu-
rations such that we can bring the object from any orientation to any
other orientation by moving along a curve embedded in this surface.

We argue in favor of this conjecture by considering the boundaries of the stable
con�guration surface. Let us de�ne the inside boundary as those con�gurations
where both the �rst and second derivative with respect to φ0 of the potential
energy function vanish. Using expressions 3.22�3.27 we can write these two
constraints as:

(cm − cr) ·
(

1
0

)
= −d̃2 sin φ1/ sin φ2 −

( cos φ0
− sin φ0

)
· x1 = 0, (3.42)

∂

∂φ0

(
(cm − cr) ·

(
1
0

))
=

v1 sin(φ1 + φ2) + (v2 + r̃2) sin φ1

sin φ2
+
(sin φ0

cos φ0

)
· x1 = 0.

(3.43)

The outside boundary of the stable con�guration surface is determined by limits on
the palm angles: φ1, φ2 > 0 and φ1 + φ2 < π. These limits can be geometrically
interpreted as follows:

φ1 = 0+, 0 < φ2 < π: When φ2 = π−, both palms are nearly horizontal,
pointing in nearly opposite directions. In the limit, as φ2 approaches
π, s1 = s2 = 0, and the contact point is an extremum of the radius
function (since the center of mass is right above the contact point and
therefore r′(θ) = −d(θ) = 0). As φ2 decreases, contact point 2 covers
nearly half the shape. As φ2 approaches 0, the palms form an antipodal
grasp. The contact points are then at a minimum of the diameter function
D(θ)

def≡ r(θ) + r(θ − π).

φ2 = 0+, 0 < φ1 < π: When φ1 = 0+, this boundary usually connects to the
previous one. As φ1 increases, the palmsmaintain an antipodal grasp, so the
contact points do not change. As φ1 approaches π, palm 1 and 2 both point
to the left. Below we will describe when this boundary and the previous
one do not connect. This case is where our argument breaks down.
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34

Figure 3.14: Plan for observing the entire shape of an unknown object.

0 < φ1 < π, φ2 = π− − φ1: This case is symmetrical to the �rst one. Now
contact point 1 covers nearly half the shape.

From this geometric interpretation it is clear that we can bring the object to
any orientation by moving along these outside boundaries. More importantly,
by following these boundaries we can reconstruct the entire shape. Figure 3.14
shows how a shape is reconstructed by palms that trace these boundaries. First
palm 2 sweeps through its entire range ofmotionwhile palm 1 is nearly horizontal.
Then palm 1 sweeps through its range. Finally both palms move simultaneously
back to their original position. The object is now rotated roughly 180◦. The
part of the shape that has been reconstructed is drawn in black. We can repeat
this plan to re�ne the estimate of the shape. However, these boundaries are
themselves not part of the surface, so the question is whether there always exist
stable con�gurations arbitrarily close to the outside boundary. The answer is
�yes�, provided the inside and outside boundary do not meet. Let a generic smooth convex
object be de�ned as a smooth convex object in general position such that none of
the singular cases described below apply. Below we will argue that for a generic
smooth convex shape the inside boundary never (with probability 1) meets the
outside boundary and, hence, there exists a path on the surface connecting any
two orientations of the object. For each outside boundary condition we can
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Figure 3.15: An antipodal grasp. For φ2 = 0 the inside and outside boundary
meet if the sum of the radii of curvature of two antipodal points is equal to the
distance between these points.

analyze what conditions must hold for the inside boundary to meet the outside
boundary:

φ1 = 0+: Without loss of generality, we can assume that φ0 = 0, in this case and
below. If φ1 = 0+, then equations 3.42 and 3.43 simplify to x1 ·

(1
0
)

= 0 and
x1 ·

(0
1
)

= −v1. In other words, contact point 1 is right below the center of
mass. Furthermore, if we draw a circle with radius equal to v1 and tangent
to the contact point, its center coincides with the center of mass. For each
point on the shape we can determine the center of the circle with radius v1
and tangent to that point. The locus of these circle centers forms a curve.
For a generic smooth object the center of mass is not on this curve.

φ2 = 0+: Since the palms make an antipodal grasp, the possible contact points
on the object are restricted to a �nite set. Now for the inside boundary to
meet the outside boundary, the limit of equation 3.43 as φ2 goes to zero has
to be equal to zero. So we have the following condition:

lim
φ2↓0

(
(v1 sin(φ1 + φ2) + (v2 + r̃2) sin φ1)/ sin φ2 + x1 ·

(
0
1

) )
= 0.

(3.44)

If φ1 > 0 this limit only converges if

lim
φ2↓0

(
v1 sin(φ1 + φ2) + (v2 + r̃2) sin φ1

)
= 0. (3.45)
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Figure 3.16: A more complicated stable pose surface.

−r̃2 will converge to the distance between the contact points. So expres-
sion 3.45 converges if the sum of the radii of curvature at the contact points
is equal to the distance between the contact points. A geometric interpre-
tation of this constraint is shown in �gure 3.15. A generic smooth object
does not have such a pair of antipodal points.
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Now consider the case where both φ1 and φ2 converge to 0. (The case
φ1 ↑ π and φ2 ↓ 0 is analogous.) Let us write φ1 = cφ2, c > 0. Then
equation 3.44 becomes

lim
φ2↓0

(
(v1 sin((c + 1)φ2) + (v2 + r̃2) sin(cφ2))/ sin φ2 + x1 ·

(
0
1

) )
= 0.

(3.46)

Using L'Hôpital's rule we can rewrite this as

v1(c + 1) + (v2 + r̃2)c + x1 ·
(

0
1

)
= 0. (3.47)

It is possible that this equation has a solution for c > 0 such that equa-
tion 3.42 is also satis�ed. Figure 3.16 shows an example of this case. There
are two places where the inside and outside boundary meet as indicated
by the two arrows. Although this case seems to invalidate our argument,
the surface is still connected and roughly has the same spiraling shape as
before. This has been the case with all the shapes we generated.

φ1 + φ2 = π: This case is, as before, symmetrical to the �rst one.

Practical concerns For practical reasons it is undesirable to plan paths on
the surface that are close to the boundary. First, we would need palms of in�nite
length for an antipodal grasp. We can get around this by removing the joint
between the palms, thereby allowing the palms to move freely. For the analysis it
is not essential that the palms are connected; the analysis just depends on relative
orientations of the palms. The second reason that moving on the boundary of
the stable con�guration surface is undesirable is that for a wide angle between the
palms, we are relying heavily on the assumption that there is no friction. Even
the slightest amount of friction will throw o� our estimate of the X-coordinate
of the center of mass.

Multiple stable poses Figure 3.13 also shows that for almost all combinations
or φ1 and φ2 there exist exactly two stable poses. However, it is possible that
for a given φ1 and φ2 there are many stable poses. We can construct a shape
with an arbitrary number of stable poses for a given palm con�guration in the
following way. Consider the arrangement of lines through the contact normals
and the line through the center of mass (along the direction of gravity). We can
rotate this arrangement around the center of mass and then translate along the
line through the center of mass to create a new stable con�guration. We pick
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palm 2 palm 1

Figure 3.17: Many stable poses are possible for a given palm con�guration that
produce the same sensor readings.

the new contact points to be at the same distance from the intersection of the
lines as in the original arrangement. This means that this new con�guration
produces the same sensor readings as well. We can repeat this process, picking
a di�erent amount of translation at each step to create an arbitrary number of
stable con�gurations. We can create a smooth convex shape that has these stable
poses in the following way. Consider the convex polygon that has the contact
points of all these stable poses as vertices. If such a polygon does not exist we
remove the poses that cause the concavities. The arrangement of lines described
above corresponds to critical points of the potential energy function. To make
sure that all the critical points are local minima we need to consider the second
derivative of the potential energy function (see equation 3.43). For each contact
point we can pick the radius of curvature to be arbitrarily large such that the
second derivative is greater than 0. We can locally deform the polygon around
each vertex such that at the contact point the radius of curvature is as desired
and the shape remains convex. Figure 3.17 illustrates this geometric construction.
Since the polygon induced by the contact points is convex, there exists a smooth
convex shape with these stable poses.
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3.7 Segmentation of ShapeReconstruction
It is possible that the object undergoes a discrete change in orientation as the
palms move. This happens when the system reaches a boundary of the stable
pose surface in the (φ1, φ2, φ0)-con�guration space. In terms of �gure 3.13, the
object �falls o�� the stable pose surface. When this happens we need to restart
our shape reconstruction process. Sudden changes in orientation give rise to two
problems:

� How do we decide that the object is undergoing a discrete change in ori-
entation? Since the sensor values are reported at a certain frequency, every
measurement corresponds to a discrete change in orientation. More im-
portantly, the sensor readings are likely to be noisy, so one spike in the
measurements doesn't necessarily mean that a jump in the orientation oc-
curred.

� Given a set of reconstructed shape segments, how do we piece them to-
gether? We have to �nd a method for determining the relative positions
of the di�erent segments. Also, if some segments overlap, we need to
consolidate the possibly con�icting values for the radius function.

For the �rst problem we can use the following approach. If the object un-
dergoes a discrete change in orientation, numerical integration of φ̇0 will be very
unstable. The predictor-corrector method will generally not be able to recover
and φ̇0 shoots o� to in�nity. So we can trigger a restart of the observer if φ̇0
exceeds a certain threshold. This means that the observer is also restarted if
there is a large error in the sensor data. Often there will be a sequence of spikes
if the object's motion approaches a singularity. To prevent the creation of many
tiny segments, we therefore also set a limit on theminimum segment length. The
search for the initial conditions at the start of each segment is seeded with the
endpoint of the previous segment.
For the initial segment we only have to search for the vertical o�set of the

center of mass with respect to the center of rotation at the start of the segment,
since we are free to choose a particular orientation. But for subsequent segments
the relative orientation with respect to this initial segment matters. So now we
have to search for two unknowns for each segment: the relative orientation and
the o�set at the start of each segment.
Implicit in these segments there is still a temporal dependence: each segment

consists of a temporal sequence of measurements. It will be useful for the shape
reconstruction to eliminate this temporal dependence. We therefore introduce
the notion of a patch. A patch is de�ned as an approximation of the radius
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error

segment 2

segment 1

Figure 3.18: The error of two (radially) overlapping segments is equal to the
area between them.

function on a domain [θ1, θ2]. We map a segment to a set of patches in the
following way. Suppose we have a segment S consisting of nmeasurements. Each
measurement is of the form (ti, θi, ri), i = 1, . . . , n. We divide the segment S
into smaller segments S1, . . . , Sm at the m extrema of the (ti, θi) sequence. If
there are extrema, then the same part of the shape is covered more than once.
Due to numerical errors and noise each time a part of the shape is covered the
approximation will look slightly di�erent. We therefore create a patch for each
time a particular part of the shape is observed and consolidate patches with
overlapping domains at a later stage. For each Sj, j = 1, . . . , m, we create a patch
Pj. The domain of Pj is de�ned as the closed interval ranging from the minimum
to the maximum θ value in Sj's measurements. The approximation of the radius
function is simply de�ned as the spline interpolation through Pj's observed values
of the radius function.

In addition to the locally observable errors, we can also de�ne a global error
term as a function of a particular arrangement of segments: we can compute the
area between con�icting sections of the segments and take that to be the error
of the arrangement (see �gure 3.18). For a given arrangement of segments we
can compute all the patches as described above. If none of the patches overlap
(radially), the error is equal to 0. Now suppose some of them do overlap. Let
[θ1, θ2] be a domain for which k patches P1, . . . , Pk overlap. Let P̄ be the average
of the k patches. Then we can de�ne the area error on [θ1, θ2] to be equal to the
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sum of the areas between each of the patches and P̄:

A([θ1, θ2]) =
1
2

k

∑
i=1

∫ θ2

θ1

|P̄(θ)2 − Pi(θ)2|dθ. (3.48)

Recall that the area under a curve in polar coordinates (θ, f (θ)) is equal to∫
θ

∫ f (θ)
0 rdrdθ = 1

2

∫
θ f (θ)2dθ. We de�ne A(·) to be equal to zero on intervals

where no patch is de�ned. We can consider P̄ to be the consolidated approxi-
mation of the shape. We can de�ne the following error measure E for a given
arrangement of reconstructed segments:

E =
(
1 +

∫
e f (t)2dt

)(
1 +

∫
‖ec(t)‖2dt

)(
1 + A([0, 2π])

)
− 1 (3.49)

Here e f and ec are the errors in the force/torque balance constraint and the
two-point contact constraint, respectively, as de�ned before. These errors are
integrated over the total duration of a simulation or an experiment. For large
errors, E is dominated by the product of the three error terms, and for small
errors, E is dominated by the sum of the three error terms. So the cost of
increasing one term as we decrease another increases as E gets smaller. The
shape reconstruction problem can now be rephrased as follows: given a series
of measurements at time ti, i = 1, . . . , n, �nd a segmentation of this series and
the initial conditions at the start of each segment such that E is minimized.
Generally, E will have many local minima.
Finding a minimum of E is computationally very expensive. In most cases the

search for the initial conditions at the start of each segment will dominate the
running time. It is therefore important to set the thresholds such that the number
of segments is small. One problem with the error function E is that it ignores the
temporal dependencies between segments. One would expect that subsequent
segments are also close in space, but there is no constraint to enforce this. We
could try to simultaneously minimize the distances between segments and the
error of the corresponding arrangement. The relative importance of distance
versus error would add yet another parameter to the optimization problem.
We can pick �reasonable� values for all these parameters, but slightly di�erent
parameters might result in radically di�erent shape reconstructions. How to pick
these parameters in an optimal way and how to compute a minimum of E are
two important open problems. In our simulations the errors did not accumulate
signi�cantly and the numerical integration was robust enough to recover from
singularities without having to start a new segment, but for more complicated
shapes and manipulation strategies the segmentation of data is still an important
problem.
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C h a p t e r 4

Dynamic Shape Reconstruction

In this chapter we drop the assumption that force/torque balance is maintained at
all time. It turns out that it is still possible to observe the shape, but now we will
need to consider second-order e�ects. We will need to model the accelerations,
forces, and torques that occur in our system. Our approach is to construct an
observer for our system. The notion of an observer will be explained later on
in more detail, but for now one can think of an observer as an (on-line) state
estimator that given an estimate quickly converges to the true state as time
progresses. The construction of an observer requires several steps. The �rst step
is to write our system in the following form:

q̇ = f (q) + τ1g1(q) + τ2g2(q), (4.1)
y = h(q) (4.2)

where q is a state vector, f , g1 and g2 are vector �elds, and h is called the output
function. In our case, the state is a vector of sensor readings and the con�guration
of the system. The con�guration is de�ned by the orientations of the palms. The
output function returns (a function of ) the sensor readings. The vector �elds
g1 and g2 are called the input vector �elds and describe the rate of change of our
system as torques are being applied on palm 1 and palm 2, respectively, at their
point of intersection. The vector �eld f is called the drift vector �eld. It includes
the e�ects of gravity.
The second step is to �nd out whether the system described by equations 4.1

and 4.2 is observable. Informally, this notion can be de�ned as: a system is
observable if for any twodi�erent states the output functionwill return a di�erent
value after some time.
The �nal step is then to construct the actual observer, which is basically a

control law. We can estimate the initial state and if our estimate is not too far
from the true initial state, the observer will rapidly converge to the actual state.
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Figure 4.1: Forces acting on the palms and the object.

Interestingly, from the proof of observability we can not immediately derive an
observer. The construction of observers for nonlinear systems is still an active
area of research. For more on nonlinear control and nonlinear observers see, e.g.,
(Isidori, 1995) and (Nijmeijer and Van der Schaft, 1990).

4.1 Equations ofMotion

In the previous chapter the quasistatic dynamics assumption provided a con-
straint that allowed us to solve for the velocity of the object. In this chapter we
will model the forces exerted by the palms and gravity on the object. We will see
that we can then solve for the acceleration of the object. By integration we can
obtain the velocity. The dynamics of our simple model are very straightforward.
We assume the e�ect of gravity on the palms is negligible. As in the previous
chapter we assume there is no friction. The contact forces exert a pure torque
on the palms about the origin. Let Fc1 = fc1 n̄1 and Fc2 = fc2 n̄2 be equal to the
contact forces acting on the object. The torques generated by the two contact
forces on the object are then

τc1 = (Rx1)× Fc1 = − fc1d1 (4.3)
τc2 = (Rx2)× Fc2 = − fc2d2 (4.4)
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The dynamics of the system are described by the following equations (see also
�gure 4.1):

ma0 = Fz + Fc1 + Fc2 (4.5)
I0α0 = τc1 + τc2 = − fc1d1 − fc2d2, fc1 , fc2 ≥ 0 (4.6)
I1α1 = τ1 − fc1s1 (4.7)

I2(α1 + α2) = τ2 + fc2s2 (4.8)

Here the subscript i, (i = 0, 1, 2) refers to the object, palm 1 and palm 2, re-
spectively. Fz = mg is the gravitational force on the object. Note that α2 is the
angular acceleration of palm 2 measured with respect to palm 1, so that φ̈2 = α2.
Solving for a0 and α0, we get

a0 = − I1α1 − τ1

ms1
n̄1 +

I2(α1 + α2)− τ2

ms2
n̄2 + g (4.9)

α0 =
I1α1 − τ1

mρ2s1
d1 −

I2(α1 + α2)− τ2

mρ2s2
d2 (4.10)

where ρ =
√

I0/m is the radius of gyration of the object.
We can measure the mass m by letting the object come to rest. In that case

a0 = 0 and we can solve for m by using m = −(Fc1 + Fc2)/g. We have to solve
for the radius of gyration by other means, shown in the next section. The mass
properties of the palms are assumed to be known.

4.2 General Case
We will now rewrite the constraints on the shape and motion of the object in
the form of equation 4.1. We will introduce the state variables ω0, ω1 and ω2
to denote φ̇0, φ̇1 and φ̇2, respectively. The other state variables are: s1, s2, r1,
r2, and ρ. So the shape at the contact points is represented by the values of the
radius function at the contact points. Note that r1 and r2 are reparametrizations
of the radius function as a function of time instead of θ. So even though shape
is thought of as being time invariant, our representation describes shape as the
rate of change in the radius function values at the contact points. The inputs to
our system are the torques produced by the motors of the palms. The outputs
are the sensor values. As we will see below, obtaining expressions for ṡ1 and ṡ2 is
quite involved, while obtaining expressions for the derivatives of the other state
variables is straightforward. Recall the position constraint on contact point 1
(equation 3.8):

s1t̄1 = cm + Rx1 (4.11)
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We can di�erentiate this constraint twice to get a constraint on the acceleration
of contact point 1. The right-hand side will contain a term with the curvature at
contact point 1, and the acceleration constraint can be rewritten as a constraint on
the curvature at contact point 1. But we already had an expression for curvature
at contact point 1 that followed from di�erentiating the contact support function
(see equation 3.29). By equating these two expressions and rearranging terms, we
can obtain an expression for ṡ1 that only depends on other state variables and the
control inputs.
By di�erentiating the position constraint on contact point 1 we get a con-

straint on the velocity of contact point 1:

ṡ1t̄1 + s1ω1n̄1 = ċm + ω0 × (Rx1) + Rẋ1 (4.12)
= ċm + ω0 × (Rx1) + (ω1 − ω0)v1t̄1 (4.13)

This follows from θ = φ1 − φ0 − π
2 and from our parametrization of the shape

of the object. Di�erentiating again results in the following constraint on the
acceleration:

s̈1t̄1 + 2ṡ1ω1n̄1 + s1α1n̄1 − s1ω2
1 t̄1 =

= a0 + α0 × (Rx1) + ω0 × (ω0 × (Rx1) + (ω1 − ω0)v1t̄1)
+ (α1 − α0)v1t̄1 + (ω1 − ω0)(v̇1t̄1 + ω1v1n̄1) (4.14)

= a0 + α0 × (Rx1)− ω2
0Rx1 + (ω2

1 − ω2
0)v1n̄1 + (α1 − α0)v1t̄1

+ (ω1 − ω0)v̇1t̄1 (4.15)

The acceleration constraint in the n̄1 direction is therefore:

2ṡ1ω1 + s1α1 = a0 · n̄1 − α0d1 + ω2
0r1 + (ω2

1 − ω2
0)v1. (4.16)

We can solve this constraint for v1:

v1 =
2ṡ1ω1 + s1α1 − ω2

0r1 − a0 · n̄1 + α0d1

ω2
1 − ω2

0
(4.17)

From before (equations 3.7 and 3.29) we had:

v1 = − ˙̃r2+(θ̇+φ̇2)d̃2
θ̇ sin φ2

= − (−ṡ1 sin φ2−s1ω2 cos φ2)+(ω12−ω0)(s1 cos φ2−s2)
(ω1−ω0) sin φ2

(4.18)

We can equate these two expressions for v1 and solve for ṡ1:

ṡ1 = −
s1α1 − ω2

0r1 − a0 · n̄1 + α0d1

ω1 − ω0
− ω1 + ω0

tan φ2
s1 +

(ω1 + ω0)(ω12 − ω0)
(ω1 − ω0) sin φ2

s2
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Similarly we can derive an expression for ṡ2. The di�erential equations describing
our system can be summarized as follows:

ṙ1 = −d1(ω1 − ω0) (4.19)
ṙ2 = −d2(ω12 − ω0) (4.20)

ω̇0 = α0 (4.21)

ṡ1 = − s1α1−ω2
0r1−a0·n̄1+α0d1
ω1−ω0

− ω1+ω0
tan φ2

s1 + (ω1+ω0)(ω12−ω0)
(ω1−ω0) sin φ2

s2 (4.22)

ṡ2 = −s2α12−ω2
0r2−a0·n̄2+α0d2

ω12−ω0
+ ω12+ω0

tan φ2
s2 − (ω12+ω0)(ω1−ω0)

(ω12−ω0) sin φ2
s1 (4.23)

φ̇1 = ω1 (4.24)
ω̇1 = α1 (4.25)
φ̇2 = ω2 (4.26)
ω̇2 = α2 (4.27)

ρ̇ = 0 (4.28)

Equation 4.19 and 4.20 follow from the properties of the radius function. Recall
from section 3.1 that d1 and d2 can be written in terms of s1, s2, r1, r2 and φ2.
Therefore d1 and d2 do not need to be part of the state of our system. Leaving
redundancies in the state would also make it hard, if not impossible, to prove
observability of the system. Note also that the control inputs τ1 and τ2 are
`hidden' inside a0 and α0. The expressions −a0 · n̄1 + α0d1 and −a0 · n̄2 + α0d2
can be rewritten using equations 4.9 and 4.10 as

−a0 · n̄1 + α0d1 = (I1α1−τ1)(ρ2+d2
1)

mρ2s1
+ (I2α12−τ2)(ρ2 cos φ2−d1d2)

mρ2s2
− g cos φ1, (4.29)

−a0 · n̄2 + α0d2 = − (I1α1−τ1)(ρ2 cos φ2−d1d2)
mρ2s1

− (I2α12−τ2)(ρ2+d2
2)

mρ2s2
+ g cos φ12,

(4.30)

where α12 = α1 + α2 and φ12 = φ1 + φ2.

Let q = (r1, r2, ω0, s1, s2, φ1, ω1, φ2, ω2, ρ)T be our state vector. Since τ1 and
τ2 appear linearly in equations 4.19�4.28, our system �ts the format of equa-
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tion 4.1. The drift vector �eld is

f (q) =



−d1(ω1 − ω0)
−d2(ω12 − ω0)
I1α1d1
mρ2s1

− I2α12d2
mρ2s2

ω2
0r1+g cos φ1

ω1−ω0
− ω1+ω0

tan φ2
s1 + (ω1+ω0)(ω12−ω0)

(ω1−ω0) sin φ2
s2 + a1

−ω2
0r2+g cos φ12
ω12−ω0

+ ω12+ω0
tan φ2

s2 − (ω12+ω0)(ω1−ω0)
(ω12−ω0) sin φ2

s1 + a2

ω1
α1
ω2
α2
0



, (4.31)

where a1 and a2 are terms that depend on the angular accelerations of the palms
and are equal to

a1 = − s1α1

ω1 − ω0
−

I1α1(ρ2 + d2
1)

mρ2s1(ω1 − ω0)
− I2α12(ρ2 cos φ2 − d1d2)

mρ2s2(ω1 − ω0)
(4.32)

a2 = − s2α12

ω12 − ω0
− I1α1(ρ2 cos φ2 − d1d2)

mρ2s1(ω12 − ω0)
−

I2α12(ρ2 + d2
2)

mρ2s2(ω12 − ω0)
(4.33)

The input vector �elds are

g1(q) =



0
0

− d1
mρ2s1

ρ2+d2
1

mρ2s1(ω1−ω0)
ρ2 cos φ2−d1d2

mρ2s1(ω12−ω0)
0
0
0
0
0



and g2(q) =



0
0
d2

mρ2s2
ρ2 cos φ2−d1d2
mρ2s2(ω1−ω0)

ρ2+d2
2

mρ2s2(ω12−ω0)
0
0
0
0
0



. (4.34)

Finally, our output function h(q) =
(
h1(q), . . . , hk(q)

)T is

h(q) = (s1, s2, φ1, ω1, φ2, ω2)
T . (4.35)
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Before we can determine the observability of this systemwe need to introduce
some more notation. We de�ne the di�erential dφ of a function φ de�ned on a
subset of Rn as

dφ(x) =
( ∂φ

∂x1
, . . . , ∂φ

∂xn

)
The Lie derivative of a function φ along a vector �eld X, denoted LXφ, is de�ned
as

LXφ = dφ · X

To determine whether the system above is observable we have to consider the
observation space O. The observation space is de�ned as the linear space of
functions that includes h1, . . . , hk, and all repeated Lie derivatives

LX1 LX2 · · · LXl hj, j = 1, . . . , k, l = 1, 2, . . . (4.36)

where Xi ∈ { f , g1, g2}, 1 ≤ i ≤ l. Let the observability codistribution at a state q
be de�ned as

dO(q) = span{dH(q)|H ∈ O}. (4.37)

Then the system described by equation 4.1 is locally observable at state q if
dim dO(q) = n, where n is the dimensionality of the state space (Hermann and
Krener, 1977). For the system described by equations 4.19�4.28 this condition is
too complicated to verify analytically, but one can still do this numerically.
The di�erentials of the components of the output function are

ds1 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0) (4.38)
ds2 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0) (4.39)
dφ1 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0) (4.40)
dω1 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0) (4.41)
dφ2 = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0) (4.42)
dω2 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0). (4.43)

These di�erentials span six dimensions of the observability codistribution. The
state space has ten dimensions, so to determine whether the system is observable
we need to compute (numerically) the di�erentials of at least four Lie derivatives.
In general dLg1s1, dLg2s2, dLg1 Lg1s1 and dLg2 Lg2s2 and the di�erentials above
will span the observability codistribution dO (see appendix A.2). So the response
of the system to the control inputs gives us information about the unknown part
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of the state. We can use this information to improve the estimate for the values
of the radius function at the contact points, the rotational velocity of the object
and its radius of gyration. Note that we can not use the vector �eld f , because we
do not have expressions for α1 and α2 in terms of the state variables and, hence,
we can not compute the di�erentials of Lie derivatives along f .

The results above show that in general we will be able to observe the shape of
an unkown object. Moreover, the output function contains enough information
to recover a constant like the radius of gyration. This leads us to suspect that it
may be possible to recover another constant as well: the coe�cient of friction.
Currently friction is not modeled, but we plan to address this in future work.

4.3 Moving the Palms at a Constant Rate

Although we have shown that the system in the previous section is observable,
this does not directly translate to an actual observer. The observability tells us
that an observer exists, but constructing a well-behaved observer for a nonlinear
system is nontrivial and is still an active area of research. Many observers (such
as those proposed by Gauthier et al. (1992) and Zimmer (1994)) rely on Lie
derivatives of the drift �eld. If we want to use such an observer we have to
constrain the motion of the palms by restricting them to move at a constant rate,
i.e., α1 = α2 = 0. With this constraint the angular acceleration of the palms
vanishes and we do not have to compute derivatives of the accelerations with
respect to the state variables. Provided the palms are su�ciently sti� compared
to the object, we can easily realize this. Note that this is an assumption and
that in general a torque-based control system does not automatically translate
to a velocity-based or position-based control system. For simplicity we will also
assume that we already have recovered the radius of gyration.

Moving both palms at the same rate Suppose we move palm 1 and 2 at the
same rate. Then ω2 = 0, since it measures the relative rate of palm 2 to palm 1.
Our state vector then reduces to q = (r1, r2, ω0, s1, s2, φ1)T. The angle between
the palms is constant, so φ2 does not need to be part of the state. For the same
reason we can omit ω1 and ω2 from the state vector. The output function is now
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h(q) = (s1, s2, φ1)T and the drift vector �eld simpli�es to

f (q) =



−d1(ω1 − ω0)
−d2(ω1 − ω0)

0
ω2

0r1+g cos φ1
ω1−ω0

− (ω1 + ω0)d̃2/ sin φ2
−ω2

0r2+g cos φ12
ω1−ω0

+ (ω1 + ω0)d̃1/ sin φ2

ω1


. (4.44)

Recall from chapter 3, equation 3.7 that d̃1 = s2 cos φ2 − s1 and d̃2 = s1 cos φ2 −
s2. We can compute the di�erentials and Lie derivatives that are necessary to
prove the observability:

ds1 = (0, 0, 0, 1, 0, 0) (4.45)
ds2 = (0, 0, 0, 0, 1, 0) (4.46)
dφ1 = (0, 0, 0, 0, 0, 1) (4.47)

L f s1 = ds1 · f = ω2
0r1+g cos φ1

ω1−ω0
+ (ω1 + ω0)(s2 − s1 cos φ2)/ sin φ2 (4.48)

dL f s1 =
( ω2

0
ω1−ω0

, 0, r1ω0(2ω1−ω0)+g cos φ1
(ω1−ω0)2 + s2−s1 cos φ2

sin φ2
, −ω1+ω0

tan φ2
,

ω1+ω0
sin φ2

, − g sin φ1
ω1−ω0

)
(4.49)

L f s2 =
−ω2

0r2 + g cos φ12

ω1 − ω0
+ (ω1 + ω0)(s2 cos φ2 − s1)/ sin φ2 (4.50)

dL f s2 =
(
0, −ω2

0
ω1−ω0

, −r2ω0(2ω1−ω0)+g cos φ12
(ω1−ω0)2 + s2 cos φ2−s1

sin φ2
, −ω1+ω0

sin φ2
,

ω1+ω0
tan φ2

, − g sin φ12
ω1−ω0

)
(4.51)

L f L f s1 = −2ω2
0ω1(r1 cos φ2+r2)
(ω1−ω0) sin φ2

− s1ω1(2ω0 + ω1)−
g sin φ1(ω0+2ω1)

ω1−ω0
(4.52)

dL f L f s1 =
( −2ω2

0ω1
(ω1−ω0) tan φ2

, −2ω2
0ω1

(ω1−ω0) sin φ2
, −2ω0ω1(2ω1−ω0)(r1 cos φ2+r2)

(ω1−ω0)2 sin φ2
− 2s1ω1

− 3ω1g sin φ1
(ω1−ω0)2 , −ω1(2ω0 + ω1), 0, −g cos φ1(ω0+2ω1)

ω1−ω0

)
(4.53)

It can be shown that the determinant of the matrix that has colums ds1, ds2,
dφ1, dL f s1, dL f s2 and dL f L f s1 is equal to

gω4
0ω1 sin φ1

(ω1 − ω0)4 (4.54)

In other words, the system is observable as long asω0 andω1 are nonzero and not
equal to each other. Recall from equation 3.28 that θ̇ is equal toω1 −ω0. So ifω0
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and ω1 are equal to each other, θ̇ = 0 and we cannot observe the curvature at the
contact points (cf. equations 3.29 and 3.30). Note that the system is observable
solely in terms of the drift vector �eld.

Keeping one palm �xed Let us now consider the case ω1 = 0: palm 1 is
�xed and palm 2 is moving at a constant rate. The state vector then reduces to
q = (r1, r2, ω0, s1, s2, φ2)T. The output function is now h(q) = (s1, s2, φ2)T and
the drift vector �eld simpli�es to

f (q) =



d1ω0
−d2(ω2 − ω0)

0

−ω2
0r1+g cos φ1

ω0
− ω0s1

tan φ2
− (ω2−ω0)s2

sin φ2
−ω2

0r2+g cos φ12
ω2−ω0

+ (ω2+ω0)s2
tan φ2

+ (ω2+ω0)ω0s1
(ω2−ω0) sin φ2

ω2


(4.55)

As before, we need to compute the di�erentials and Lie derivatives to determine
observability:

ds1 = (0, 0, 0, 1, 0, 0) (4.56)
ds2 = (0, 0, 0, 0, 1, 0) (4.57)
dφ2 = (0, 0, 0, 0, 0, 1) (4.58)

L f s2 = −ω2
0r1+g cos φ1

ω0
− ω0s1

tan φ2
− (ω2−ω0)s2

sin φ2
(4.59)

dL f s1 =
(
− ω0, 0, −r1 + g cos φ1

ω2
0

− s1
tan φ2

+ s2
sin φ2

, − ω0
tan φ2

, −ω2−ω0
sin φ2

,

ω0s1+(ω2−ω0)s2 cos φ2
sin2 φ2

)
(4.60)

L f s2 = −ω2
0r2+g cos φ12

ω2−ω0
+ (ω2+ω0)s2

tan φ2
+ (ω2+ω0)ω0s1

(ω2−ω0) sin φ2
(4.61)

dL f s2 =
(
0, −ω2

0
ω2−ω0

, −r2ω0(2ω2−ω0)+g cos φ12
(ω2−ω0)2 + s2

tan φ2
− s1(ω2

2+2ω0ω2−ω2
0)

(ω2−ω0)2 sin φ2
,

(ω2+ω0)ω0
(ω2−ω0) sin φ2

, ω2+ω0
tan φ2

, −g sin φ12
ω2−ω0

− s2(ω2+ω0)
sin2 φ2

− (ω2+ω0)ω0s1 cos φ2
(ω2−ω0) sin2 φ2

)
(4.62)

L f L f s2 = −2ω2
0ω2(r1+r2 cos φ2)
(ω2−ω0) sin φ2

− s2ω2(2ω0 + ω2)−
g(ω0+2ω2) sin φ12

ω2−ω0
(4.63)

dL f L f s2 =
( −2ω2

0ω2
(ω2−ω0) sin φ2

, −2ω2
0ω2

(ω2−ω0) tan φ2
, −2ω0ω2(2ω2−ω0)(r1+r2 cos φ2)

(ω2−ω0)2 sin φ2
− 2s2ω2

− 3ω2g sin φ12
(ω2−ω0)2 , 0,−ω2(2ω0 + ω2), 2ω2

0ω2(r1 cos φ2+r2)
(ω2−ω0) sin2 φ2

− −g cos φ12(ω0+2ω2)
ω2−ω0

)
(4.64)
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It can be shown that the determinant of the matrix that has colums ds1, ds2, dφ1,
dL f s1, dL f s2 and dL f L f s2 is equal to

− 2ω3
0ω2

2
(ω2−ω0)3 sin φ2

[( cos φ1
ω0

+ sin φ1 sin φ12
2ω2

)
g + ω0r1 + s1(ω2+ω0)

tan φ2
+ s2(ω2−ω0)

sin φ2

]
. (4.65)

This determinant is generally nonzero if ω0 and ω2 are nonzero and not equal
to each other. By the same argument as in the previous case, if ω0 = 0 or
ω2 − ω0 = 0 we cannot observe the curvature at contact point 1 or contact
point 2, respectively. So even if we move only palm 2 at a constant rate and hold
palm 1 �xed, the system is still locally observable.

4.4 Fixed Palms
For illustrative purposes we will now consider one more special case, where it
is possible to analytically determine observability. Suppose our control strategy
consists of keeping the palms in the same position. In other words, ω1 = ω2 =
α1 = α2 = 0. Note that this is not the same as clamping the palms, since we still
assume that the palms are actively controlled. We can then reduce our state even
further to q = (r1, r2, ω0, s1, s2)T. The input and control vector �elds simplify to

f (q) =


d1ω0
d2ω0

0
− g cos φ1

ω0
− ω0

(
r1 + s1

tan φ2
− s2

sin φ2

)
− g cos φ12

ω0
+ ω0

(
r2 + s2

tan φ2
− s1

sin φ2

)

 ,

g1(q) =



0
0

− d1
mρ2s1

− ρ2+d2
1

mρ2s1ω0

− ρ2 cos φ2−d1d2
mρ2s1ω0


, and g2(q) =



0
0
d2

mρ2s2

− ρ2 cos φ2−d1d2
mρ2s2ω0

− ρ2+d2
2

mρ2s2ω0


. (4.66)

The output function is now simply h(q) = (s1, s2)T. Since the output func-
tion has two components and our state space is �ve-dimensional, we need to
take at least three Lie derivatives. Consider the following di�erentials and Lie
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derivatives:

ds1 = (0, 0, 0, 1, 0) (4.67)
ds2 = (0, 0, 0, 0, 1) (4.68)

L f s1 = − g cos φ1
ω0

− ω0
(
r1 + s1

tan φ2
− s2

sin φ2

)
(4.69)

dL f s1 =
(
− ω0, 0, g cos φ1

ω2
0

−
(
r1 + s1

tan φ2
− s2

sin φ2

)
,− ω0

tan φ2
, ω0

sin φ2

)
(4.70)

L f s2 = − g cos φ12
ω0

− ω0
(
r2 + s2

tan φ2
− s1

sin φ2

)
(4.71)

dL f s2 =
(

0,−ω0,− g cos φ12
ω2

0
−
(
r2 + s2

tan φ2
− s1

sin φ2

)
, ω0

sin φ2
,− ω0

tan φ2

)
(4.72)

L f L f s1 = ω2
0(−d1 + r1

tan φ2
+ r2

sin φ2
− s1) + g sin φ1 = g sin φ1 (4.73)

dL f L f s1 = (0, 0, 0, 0, 0) (4.74)

The step in equation 4.73 follows from expression 3.18. Because of symmetry
dL f L f s2 is equal to the 0 vector as well. This means that with �xed palms the
system is not observable in terms of just the drift �eld f . Now suppose we
compute the Lie derivative of s1 along g1 and its di�erential:

Lg1s1 = −
ρ2 + d2

1
mρ2s1ω0

(4.75)

dLg1s1 = 1
mρ2s1ω0

( −2d1
tan φ2

, −2d1
sin φ2

, ρ2+d2
1

ω0
, 2d1 + ρ2+d2

1
s1

, 0
)

(4.76)

Thedi�erentials ds1, ds2, dL f s1, dL f s2 and dLg1s1 generally span the observability
codistribution and, hence, the system is observable. It is important to remember
that the palms are actively controlled, i.e., the palms are not clamped. Otherwise
we would not know the torques exerted by the palms. We need the torques
to integrate (by using an observer) the di�erential equation 4.1. As mentioned
before, the construction of an observer that relies on the control vector �elds is
nontrivial. Since the motion of the palms is so constrained, the system is likely
to observe only a small fraction of an unknown shape. Therefore we suspect that
if one were to construct an observer it would have very limited practical value.

4.5 AnObserver Based onNewton'sMethod
The observer we implemented is based on Newton's method (Zimmer, 1994) for
�nding the roots (i.e., zeros) of a function. Before we describe the details of our
observer, let us �rst quickly review Newton's method. Suppose we want to �nd
a root of a function f : R → R. Let x0 be an initial guess close to a root x̄ of f .
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Figure 4.2: Newton's method.

Then the sequence xn+1 = xn − f (xn)
f ′(xn) , n ≥ 0, converges quadratically to x̄. See

�gure 4.2 for an illustration of this method.
With an observer we are trying to minimize the di�erence between the state

estimate and the true state. We cannot actually observe the true state, but we
can consider the di�erences between the expected output based on the estimate
and the actual output. Following Zimmer, we say that a system in the form of
equations 4.1�4.2 is strongly observable in Q if and only if for any time interval
I = [0, T] and for any given initial states q1(0), q2(0) ∈ Q and for any t ∈ I

� the states q1(t) and q2(t) remain in Q, and
� the system outputs y(q1(t)) and y(q2(t)) are identical in I only if q1 = q2.

A system is called locally strongly observable in Q if and only if there is an ε > 0 so
that for every t in the time interval I = [0, T] and for every q ∈ Q the system at
time t is locally observable in Bε(q) ∩ Q, where Bε(q) is a n-dimensional sphere
with radius ε centered at q.
Let us now de�ne the distance function k : Rn ×Rn → R+:

k(q1(0), q2(0)) = 1
2

∫ T

0
‖h(q1(t))− h(q2(t))‖2dt (4.77)

So the distance between two states q1 and q2 at t = 0 is de�ned as the di�erence
between the outputs over time T obtained by integrating out equation 4.1 for
each state and applying the output function to it. So we can transform the state
estimation problem into aminimization problem. Let q∗ be an estimate for q and
let kq = k(·, q) be the error function for a particular state. Clearly, if a system is
strongly observable, then kq has a unique minimum at q, equal to 0. But q is also
a root of the �rst derivative of kq. We can apply Newton's method to improve
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the state estimate q∗ of q:

q∗new = q∗old −

(
∂2kq

(∂q)2

)−1 (
∂kq

∂q

)T

(4.78)

(The `T' denotes transpose here, not time.) Note that to evaluate kq(q∗) we do
not need to know q. All we need is the output over an interval I. For this method
to be successful a number of conditions need to be satis�ed:

� The function kq needs to be convex near q. This is equivalent to saying
that the Hessian matrix ∂2kq

(∂q)2 is positive de�nite. Zimmer showed that this
is the case if and only if the linearized system around q is locally observable
in I.

� This Hessian matrix also has to be invertible. Zimmer derived su�cient
conditions to test if that is the case.

If these conditions are not satis�ed (for instance, near or at singularities), we need
to resort to other methods for shape recovery. The simplest method is to simply
integrate the di�erential equations describing our system. Alternatively, we can
ignore the sensor data while the above conditions are not satis�ed and restart
our observer when they are.
There are several ways we can use the update rule of equation 4.78 in an

observer depending on the amount of computation we are willing to spend on
improving the state estimate. If we are trying to reconstruct a shape in real-
time, then we may not be able to take many Newton steps. In that case, we
can update our state estimate every T seconds by taking one Newton step as
given by equation 4.78. If we are reconstructing the shape o�ine, we can take
an arbitrary number of Newton steps. We could even update the state estimate
more frequently than every T seconds.
Although most observers are used for online state estimation, this Newton

observer has more of an o�ine �avor. There is a minimal delay of T seconds
between measuring the output of the system and being able to correct the state
estimate of the system at that time, because the observer needs to know how an
error in the state estimate at a given time a�ects the output in the T seconds
after it.

4.6 SimulationResults
The observer described above has been implemented in Matlab. The results of
one simulation are shown in �gures 4.3 and 4.4. We simulated the motion of a
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t=0.07 t=0.14 t=0.21 t=0.28

t=0.35 t=0.42 t=0.49 t=0.56

t=0.63 t=0.70 t=0.77 t=0.84

t=0.91 t=0.98 t=1.05 t=1.12

t=1.19 t=1.26 t=1.33 t=1.40

Figure 4.3: The frames show the reconstructed shape after 10, 20,. . . ,400
measurements. The three large dots indicate the center of mass and the contact
points at each time, the smaller dots show the part of the shape that has been
reconstructed at that time.
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Figure 4.4: Shape reconstruction with an observer based on Newton's method.

random smooth shape over 1.4 seconds. We split the total time into 400 time
steps and applied �ve Newton steps after every 80 time steps. At t = 0 we do
something slightly di�erent. We assume the object's initial velocity is equal to
0. This simpli�es the search for the initial conditions since we now only have to
search for the initial values of the radius function at the contact points. The initial
guess for the value of the radius function was set to 2 for both contact points.
The initial value of ω0 is `clamped' to 0 at t = 0; the Newton observer cannot
change this initial value. After �ve Newton steps the observer has found values
for the radius function that are very close to the actual values. The recovered
values of the radius function are very close to the true values. Figure 4.4(d) shows
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the di�erence in the sensor values the observer expected to see and the actual
sensor values.

4.7 Arbitrary PalmShapes
In this chapter we wrote the shape and motion of the object as a function of the
shape and motion of the palms. Instead of the shape and motion of the palms,
we could also use the contact point positions and velocities in world coordinates.
Let ci be contact point i in world coordinates. Then there exist functions Cpalms
and Cobject such that

Cpalms(τ1, φ1, ω1, s1, ṡ1, τ2, φ2, ω2, s2, ṡ2) =
(
c1, ċ1, c2, ċ2

)T (4.79)

Cobject(r1, ṙ1, r2, ṙ2, φ0, ω0, α0, a0) =
(
c1, ċ1, c2, ċ2

)T (4.80)

E�ectively, we have used world coordinates to decouple the solution for the shape
and motion of the unknown object from the shape and motion of the palm. This
allows us to use di�erently shaped palms without changing the solution for the
shape and motion of the unknown object. Suppose we were to use circular palms.
(For di�erent palm shapes the approach would be the same.) Let c1 and c2 be
de�ned as

c1 = b1R1

(
sin(s1/b1)

1− cos(s1/b1)

)
(4.81)

c2 = b2R2

(
sin(s2/b2)

cos(s2/b2)− 1

)
(4.82)

Here bi is the radius of palm i and Ri a rotation matrix equal to

Ri =
(

cos φi − sin φi
sin φi cos φi

)
.

Note that φ2 is now the angle between the X-axis and palm 2, and not the angle
between the palms. The sensor values correspond to arc length. See �gure 4.5
for an illustration. Note that just as with �at palms, if si = 0, then ci = 0. In
fact, in the limit, as b1 and b2 approach in�nity, the circular palms are equivalent
to the �at palms.
The local coordinate frames at the contact points are now

t̄1 = R1

(
cos(s1/b1)
sin(s1/b1)

)
t̄2 = R2

(
− cos(s2/b2)

sin(s2/b2)

)
n̄1 = R1

(
− sin(s1/b1)
cos(s1/b1)

)
n̄2 = −R2

(
sin(s2/b2)
cos(s2/b2)

)
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Figure 4.5: Circular palms.

By looking at projections of ci onto these frames we can again obtain a system
of di�erential equations similar to equations 4.19�4.28. Most of the di�erential
equations remain the same. The ones that depend directly on the palm shape
are the equations for ω̇0, ṡ1, and ṡ2. Below we outline the procedure for proving
observability for a system with circular palms.
The �rst and second derivative of contact point 1 are:

ċ1 = ω1 × c1 + ṡ1t̄1 (4.83)
c̈1 = α1 × c1 + ω1 × (ω1 × c1 + 2ṡ1t̄1) + s̈1t̄1 + (ṡ2

1/b1)n̄1

= α1 × c1 − ω2
1c1 + 2ω1ṡ1n̄1 + s̈1t̄1 + (ṡ2

1/b1)n̄1 (4.84)

We can write c1 also as a function of the pose of the object: c1 = cm + R0x1.
By di�erentiating this expression twice and equating it to expression 4.84, we
obtain a constraint on the acceleration at contact point 1. In fact, we already
computed the second derivative of this expression; it is given by the right-hand
side of equation 4.15. The projection of the acceleration constraint onto the palm
normal at contact point 1 is given by

α1(c1 · t̄1)− ω2
1(c1 · n̄1) + 2ω1ṡ1 + ṡ2

1/b1

= a0 · n̄1 + ω2
0r1 − α0d1 + (ω2

1 − ω2
0)v1. (4.85)
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Solving for v1 we get:

v1 = α1(c1·t̄1)−ω2
1(c1·n̄1)+2ω1 ṡ1+ṡ2

1/b1−ω2
0r1−a0·n̄1+α0d1

ω2
1−ω2

0
(4.86)

= α1b1 sin(s1/b1)−ω2
1b1(cos(s1/b1)−1)+2ω1 ṡ1+ṡ2

1/b1−ω2
0r1−a0·n̄1+α0d1

ω2
1−ω2

0
(4.87)

The expression we obtained for v1 in chapter 3, equation 3.29, is still valid if we
replace φ̇2 with the time derivative of the angle between t̄1 and −t̄2. The gener-
alized support functions can still be expressed as functions of the sensor values
and palm angles, but these expressions will now be very di�erent. We can equate
equation 3.29 and 4.86, substitute the expressions for the generalized radius func-
tions corresponding to spherical palms, and solve for ṡ1. Since equation 3.29 is
linear in ṡ1 and equation 4.86 quadratic in ṡ1, there exist potentially two solutions
for ṡ1. Since we assume the object is convex, we have the constraint v1 > 0. This
allows us to reject solutions for ṡ1 that make v1 negative. In a similar manner we
can obtain a solution for ṡ2.
The dynamics of a system with circular palms are almost the same as be-

fore. The only di�erence is that the moment arm for the moment of contact
force i around the origin is no longer equal to si. The palm dynamics are now
(cf. equations 4.7 and 4.8):

I1α1 = τ1 − fc1(c1 · t̄1) = τ1 − fc1b1 sin(s1/b1) (4.88)
I2α12 = τ2 − fc2(c2 · t̄2) = τ2 + fc2b2 sin(s2/b2) (4.89)

The solutions for a0 and α0 are therefore (cf. equations 4.9 and 4.10):

a0 = − I1α1 − τ1

mb1 sin(s1/b1)
n̄1 +

I2α12 − τ2

mb2 sin(s2/b2)
n̄2 + g (4.90)

α0 =
I1α1 − τ1

mρ2b1 sin(s1/b1)
d1 −

I2α12 − τ2

mρ2b2 sin(s2/b2)
d2 (4.91)

By de�nition, ω̇0 = α0, but we also need these solutions for the solution of ṡ1 and
ṡ2. Proving observability given these solutions is rather cumbersome, due to the
nonlinearity of the palms. We plan to implement this model in future work. In
this implementation we will check for observability numerically. It seems likely
that the system is observable for most combinations of b1 and b2. So we may be
able to choose the radii of the palms such that the system is observable.

Discussion Changing the palm shapes raises many new questions. Intuitively,
it seems that circular palms would be `better' than �at palms, but can we quantify
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this? It also seems that with circular palms we would have to move the palms less
to reach a point on the surface.
Suppose the palms are actually deformable, in a controlled way, by varying

bi. By reducing bi from ∞ to 0 while maintaining the same tangent plane at the
contact point we can probe the local curvature without having tomove the shape.
For this approach to work the palms need to be small enough to avoid collisions
with parts of the shape that are not in a small neighborhood around the contact
point. We think it will be interesting to �nd out how these enveloping grasps
can be used if the palms are not small and if the contact points do change while
the object is enveloped.
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C h a p t e r 5

Shape Reconstruction
in Three Dimensions

Naturally we would like to extend the results from the previous chapters to three
dimensions. We can manipulate an object with three planar palms as shown in
�gure 1.2. Although the same general approach can also be used for the 3D case,
there are also some fundamental di�erences. First of all, the di�erence is not
just one extra dimension, but three extra dimensions: a planar object has three
degrees of freedom and a 3D object has six. Analogous to the planar case we can
derive a constraint on the position of the center of mass if we assume quasistatic
dynamics. This constraint gives us the X and Y coordinate of the center of mass
(see appendix A.3). However, assuming quasistatic dynamics is not su�cient to
solve for the motion of an unknown object: if the object stays in contact with the
palms it has three degrees of freedom, but the quasistatic dynamics give us only
two constraints. Another di�erence from the planar case is that in 3D we cannot
completely recover an unknown shape in �nite time, since the contact points trace
out only curves on the surface of the shape.

5.1 Notation
In 3D the surface of an arbitrary smooth convex object can be parameterized
with spherical coordinates θ = (θ1, θ2) ∈ [0, 2π) × [−π

2 , π
2 ]. For a given θ we

de�ne the following right-handed coordinate frame

t1(θ) =

− sin θ1
cos θ1

0

 (5.1)
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Figure 5.1: The coordinate frame de�ned using spherical coordinates

t2(θ) =

− cos θ1 sin θ2
− sin θ1 sin θ2

cos θ2

 (5.2)

n(θ) =

cos θ1 cos θ2
sin θ1 cos θ2

sin θ2

 (5.3)

See �gure 5.1. The function x : S2 → R3 describing a smooth shape can then be
de�ned as follows. The vector x(θ) is de�ned as the vector from the center of
mass to the point on the shape where the surface normal is equal to n(θ).
The contact support function (r(θ), d(θ), e(θ)) is de�ned as

r(θ) = x(θ) · n(θ), d(θ) = x(θ) · t1(θ), e(θ) = x(θ) · t2(θ)

The function r(θ) is called the radius function. As in the planar case, the radius
function completely describes the surface. The other two components of the
contact support function appear in the derivatives of the radius function:

∂r
∂θ1

=
∂x
∂θ1

· n + x · ∂n
∂θ1

= 0 + (x · t1) cos θ2 = d cos θ2 (5.4)
∂r
∂θ2

=
∂x
∂θ2

· n + x · ∂n
∂θ2

= 0 + (x · t2) = e (5.5)

By de�nition, the partial derivatives of x lie in the tangent plane, so the dot
product of the partials with the normal is equal to 0. Let θi = (θi1, θi2)T denote
the surface parameters for contact point i. Below we will drop the argument
θi and replace it with a subscript i where it does not lead to confusion. For
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Figure 5.2: Illustration of the notation.

instance, we will write ni for n(θi), the surface normal at contact point i in body
coordinates.

The palms are modeled as three planes. The point of intersection of these
planes is the origin of the world frame. Let us assume we can rotate each plane
around the line of intersection with the horizontal plane through the origin. For
each palm we can de�ne a right-handed frame as follows. Let n̄i be the normal
to palm i (in world coordinates) pointing toward the object, let t̄i2 be the tangent
normal to the axis of rotation and pointing in the positive Z direction and let
t̄i1 be t̄i2 × n̄i. Then Ri = [t̄i1,t̄i2,n̄i] is a right-handed frame for palm i. The
con�guration of the palms is completely described by the three rotation matrices
R1, R2, and R3. Let si denote the coordinates in palm frame i of contact point ci,
so thatRisi = ci. Note that the third component of si is always zero; by de�nition
the distance of the contact point along the normal is zero. See �gure 5.2 for an
illustration.

The position and orientation of the unknown object are described by cm and
R0, respectively. The center of mass is located at cm. The object coordinate
frame de�ned by R0 is chosen such that it coincides with the principal axes of
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inertia. The inertia matrix I can then be written as

I = m

ρ2
x 0 0

0 ρ2
y 0

0 0 ρ2
z

 ,

where m is the mass of the object, and the ρ's correspond to the radii of gyration.
We will write βi for the curve traced out on the surface of the object by contact
point i. So βi(t) = x

(
θi(t)

)
.

5.2 Local Shape
We can recover the local shape at the contact points by considering the distances
between the contact points and the rates at which they change. We can write
the constraint that the object maintains contact with each palm as

ci = cm + R0βi, i = 1, 2, 3 (5.6)

The velocity of contact point i is therefore

ċi = ċm + ω0 × R0βi + R0β̇i (5.7)

The di�erence between two contact point velocities is

ċi − ċj = ω0 × R0(βi − β j) + R0(β̇i − β̇ j) (5.8)
= ω0 × (ci − cj) + R0(β̇i − β̇ j) (5.9)

Since we assume the object is smooth, we have that ni · β̇i = 0. Furthermore,
the palm normals and object are related by the object orientation matrix:

n̄i = −R0ni (5.10)

since n̄i is in world coordinates and ni is in object coordinates. We can combine
these constraints to solve for β̇i:

n̄i · R0β̇i = 0 (5.11)
n̄j · R0β̇i = n̄j ·

(
ċi − ċj − ω0 × (ci − cj)

)
(5.12)

n̄k · R0β̇i = n̄k ·
(
ċi − ċk − ω0 × (ci − ck)

)
, (5.13)

such that i, j, and k are distinct. Let Q be the de�ned as the 3 × 3 matrix with
entries qji:

qji = n̄j ·
(
ċi − ċj − ω0 × (ci − cj)

)
(5.14)

Then we can write the solution for β̇1, β̇2, and β̇3 more compactly as
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(
β̇1 β̇2 β̇3

)
= B−1Q, (5.15)

where B =
(
n̄1 n̄2 n̄3

)T R0. As long as the palms are in general position, B will
be invertible. Equation 5.15 describes the curves traced out by the contact points
on the surface of the object (in body coordinates) as a function of the motion
of the palms, the sensor values and the motion of the object. Note that these
curves are not independent of each other. We know the con�gurations of the
palms and the sensor values. If we also know one of the curves and the motion
of the object, we can reconstruct the other curves. Below we will show that we
can reconstruct all three curves by solving for the values of the radius function
along the curves. Using equations 5.4 and 5.5, the derivative with respect to time
of the radius function at contact point i is

ṙi =
∂r

∂θi1
θ̇i1 +

∂r
∂θi2

θ̇i2 =
(

di cos θi2
ei

)
· θ̇i (5.16)

We will rewrite the right-hand side of this equation as a function of the motion
of the palms and the object, and the values of the radius function at the contact
points. Using the position constraints we can rewrite di and ei as a function of
the con�guration of the palms and ri. We can write βi as

βi = rini + diti1 + eti2 (5.17)

The vector between contact point i and contact point j is then

ci − cj = R0(βi − β j) = R0(rini + diti1 + eti2 − rjnj + djtj1 + etj2) (5.18)

By rearranging terms we can obtain the following solution for the d's and e's:
d1
e1
d2
e2
d3
e3

 =


t11 t12 −t21 −t22

0
0
0

0
0
0

t11 t12

0
0
0

0
0
0

−t31 −t32



−1

(
RT

0 (c1 − c2)− (r1n1 − r2n2)

RT
0 (c1 − c3)− (r1n1 − r3n3)

)

(5.19)

`Hidden' in the tangent vectors are the θi's. Using equation 5.3 we can write θi as
a function of the palm surface normal ni:

θi =
(

arctan(ni2, ni1)
arcsin ni3

)
(5.20)
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The relationship between the normal ni and the orientations of the palms and
object is given by equation 5.10. The expression for ṙi also contains θ̇i. By
considering the derivative of the normal ni we can obtain simple expressions for
θ̇i. On the one hand we have that

ṅi =
∂n

∂θi1
θ̇i1 +

∂n
∂θi2

θ̇i2 = θ̇i1 cos θ2ti1 + θ̇i2ti2. (5.21)

But we can also obtain ṅi by di�erentiating equation 5.10:

ωi × n̄i = ˙̄ni = −ω0 × R0ni − R0ṅi ⇒ ṅi = RT
0
(
(ω0 − ωi)× n̄i

)
(5.22)

Here ωi is the rotational velocity of palm i. Combining these two expressions
for ṅi we can write θ̇i as

θ̇i =
(
ti1/ cos θi2 ti2

)T RT
0
(
(ω0 − ωi)× n̄i

)
(5.23)

Let us now consider the constraints on the acceleration of the object induced
by the three point contact assumption. This will provide us with an additional
constraint on βi and will give us some more insight into how the 3D case is
fundamentally di�erent from the planar case. By di�erentiating equation 5.7 we
obtain the following constraint on the acceleration:

c̈i = a0 + α0 × R0βi + ω0 × (ω0 × R0βi + 2R0β̇i) + R0β̈i, (5.24)

where a0 and α0 are the acceleration and angular acceleration of the object. (We
will solve for a0 and α0 in the next section by analyzing the dynamics.) Observe
that from di�erentiation of the smoothness constraint β̇i · ni = 0 it follows that
β̈i · ni = −β̇i · ṅi. We can therefore rewrite the acceleration constraint in the
normal direction as a constraint on β̇i. First, we rewrite the terms containing β̇i
and β̈i:

n̄i · (ω0 × 2R0β̇i) + n̄i · R0β̈i = 2(n̄i × ω0) · R0β̇i + R0(ṅi · β̇i)

= 2(n̄i × ω0) · R0β̇i + ((ω0 − ωi)× n̄i) · R0β̇i

= (n̄i × (ω0 + ωi)) · R0β̇i

The constraint on β̇i is therefore

(n̄i × (ω0 + ωi)) · R0β̇i = n̄i ·
(
c̈i − a0 − α0 × R0βi − ω0 × (ω0 × R0βi)

)
(5.25)
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Let us now consider what how the acceleration constraint describes certain
time-independent shape properties of the contact curves. TheDarboux frame�eld
(Spivak, 1999b) can be used to describe curves on a surface. For the curve βi the
Darboux frame �eld is de�ned by the unit tangent T of βi, the surface normal U
restricted to βi, and V = U × T. The normalU coincides with ni. Note that the
normal of the curve does not necessarily coincide with the normal of the surface.
Similar to the Frenet frame �eld, the derivatives of T, V, andU can be expressed
in terms of T, V, and U:

Ṫ = v( κgV + κnU) (5.26)
V̇ = v(−κgT + τgU ) (5.27)
U̇ = v(−κnT−τgV ) (5.28)

Here v = ‖β̇i‖ is the velocity of the curve, κg the geodesic curvature, κn the normal
curvature, and τg the geodesic torsion. The geodesic curvature at a point describes
the `bending' of the curve in the tangent plane of the surface at that point. The
normal curvature at a point describes the `bending' of the curve in the surface
normal direction. Using this frame �eld we can write β̈i as

β̈i = v̇T + vṪ = v̇T + v2(κgV + κnU) (5.29)

So by taking the dot product with the normal on both sides of the acceleration
constraint we can obtain a constraint on the normal curvature κn of the curve:

κn = β̈i ·U = β̈i · ni = −β̇i · ṅi (5.30)

On the right-hand sidewe can substitute the solutions fromequations 5.15 and 5.22
for β̇i and ṅi, respectively. In the planar case the velocity of the curve is equal to
the radius of curvature, and the acceleration constraint determines the (normal)
curvature at the contact points. In the 3D case, the acceleration constraint
puts a constraint on the normal curvature at the contact points. But now we
have two extra curve shape parameters, κg and τg, which are equal to zero
in the planar case. In other words, in 3D the contact point curves are less
constrained than in 2D. Let the state of the system in 3D be de�ned as q =
(r1, r2, r3, R0, ω0, s1, s2, s3, φ1, φ2, φ3)T, where φi is the angle between palm i and
the X-Y plane. Then having fewer constraints in 3D means that we cannot write
the behavior of the system in state-space form q̇ = f (q, u), where u is a vector
of control inputs. More speci�cally, we can not write ṡi as a function of state
variables and controls.
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5.3 Dynamics
The solution for the shape of the object depends on themotion of the object. We
can solve for the motion by writing out the dynamics equations for the system
formed by the palms and the object. Let Ii be the moment of inertia of palm i
around its axis of rotation, αi the angular acceleration around that axis, τi the
torque produced by palm i's motor at the axis of rotation, and fi the magnitude
of the contact force. Then the motion of palm i is described by

Iiαi = τi − fisi2, (5.31)
where si2 is the second component of si. From the de�nition of the palm frame it
follows that si2 measures the distance to the axis of rotation (see also �gure 5.2).
The net force and net torque on the object are given by Newton's and Euler's
equations:

F0 = ma0 = Fg +
3

∑
i=1

fin̄i (5.32)

τ0 = I ′α0 + ω0 × I ′ω0 =
3

∑
i=1

τci (5.33)

where

I ′ = R0IRT
0 (5.34)

τci = (R0βi)× ( fin̄i) = − fiR0(βi × ni) (5.35)
From these equations we can solve for the angular acceleration of the object, α0:

α0 = −I ′−1(ω0 × I ′ω0 +
3

∑
i=1

τi − Iiαi

si2
R0(βi × ni)

)
(5.36)

Let us assume we can control the palms to move at a constant rotational velocity.
The angular acceleration terms αi will then disappear. We can summarize the
simultaneous solution for the shape and motion of an unknown smooth convex
object manipulated by three �at palms with the following system of di�erential
equations:

ṙi = (di cos θi2, ei)T · θ̇i, i = 1, 2, 3 (5.37)
Ṙ0 = ω̂0R0 (5.38)

ω̇0 = −I ′−1(ω0 × I ′ω0 +
3

∑
i=1

τi

si2
R0(βi × ni)

)
(5.39)
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Here ω̂0 is the matrix form of the cross product, i.e., the 3 × 3 matrix such
that ω̂0p = ω0 × p for any vector p. Equation 5.37 describes the shape of the
object at the contact points. Equations 5.38 and 5.39 describe the dynamics of
the object. We can replace the variables di, ei, θi2, θ̇i, and βi with the solutions
given in equations 5.19, 5.20, and 5.23 so that the system of di�erential equations
only depends on the values of the radius function at the contact points, palm
con�gurations and sensor values. This allows us to integrate the system of
di�erential equations given the palm con�gurations and sensor values.

5.4 Integrating Rotations
Numerical integration of the above system of di�erential equations will result in
very unstable behavior due to thehighly redundant representationof orientations:
a orientation matrix uses nine numbers to represent three degrees of freedom.
There exist many three-variable parameterizations of orientations, but they all
su�er from singularities. In 1843, the mathematician W.R. Hamilton invented
quaternions: four-variable representations of orientation that do not su�er from
singularities. For a brief introduction to quaternions, see (Chou, 1992). Although
quaternions were originally formulated as a generalization of complex numbers,
for our purposes it will be more convenient to think of them as consisting of a
scalar part and a vector part. Let p = (p0, p) and q = (q0, q) be two quaternions.
Then the quaternion product is de�ned as

pq = (p0q0 − p · q, p0q + q0p + p × q) (5.40)

The conjugate q∗ of a quaternion q is de�ned as q∗ = (q0,−q). The norm of a
quaternion q is de�ned as ‖q‖ = qq∗ = q2

0 + ‖q‖2.
We will represent rotations with unit quaternions (i.e, ‖q‖ = 1). Unit quater-

nions are also known as Euler parameters (not to be confused with Euler angles).
Let q be a unit quaternion and let v = (0, v) be a vector quaternion (i.e., a
quaternion with the scalar part equal to zero). We can write q as

q =
(

cos
θ

2
, (sin

θ

2
)u
)
, (5.41)

where u is a unit vector. This quaternion represents the orientation that is rotated
about u by θ with respect to the world frame. It can be shown that the vector part
of v′ = qvq∗ is equal to the vector v rotated around u by θ. From this expression
it is clear that q and −q correspond to the same orientation. So there exists a
two-to-one mapping from quaternion parameters to a rotation and a nonsingular
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one-to-two mapping from rotations to unit quaternions. The rotation matrix R
corresponding to q is equal to

R = (cos θ)I + (1− cos θ)uuT + (sin θ)û,

where û is the matrix representation of the cross product: ûp = u × p, for any
vector p.
Let q be a unit quaternion representing the orientation of the object being

manipulated by the three palms. The relationship between the rotational velocity
ω0 and q̇ is given by (Chou, 1992)

ω0 = 2q̇q∗ or q̇ = 1
2 ω0q,

This is a slight abuse of notation: we do not distinguish between the three-vector
ω0 and the vector quaternion with ω0 as vector component. The relationship
between the angular acceleration α0 and q̈ is given by (Chou, 1992)

α0 = 2(q̈q∗ + q̇q̇∗) or q̈ = (−‖q̇‖2, 1
2 α0)q

Using these relationship we can easily move back and forth between the four-
parameter quaternion space and rotations.
During the integration of rotational motion using quaternions we need to

maintain certain invariants that may be violated due to numerical inaccuracies.
First, for q to represent a valid orientation it needs to have unit norm. So at each
integration step we need to renormalize q. Second, the unit-norm constraint
also puts a constraint on the rotational velocity. By di�erentiating the constraint
qq∗ = 1 we obtain the constraint

q0q̇0 + q · q̇ = 0

At each timestep let δ be equal to q0q̇0 + q · q̇. Then using the corrected quater-
nion derivative q̇′ = q̇ − δq signi�cantly improves the numerical stability.

5.5 SimulationResults
Wehave written a program to simulate the motion of an arbitrary smooth convex
object supported by three planes. To reconstruct the shape we need to integrate
out the system of di�erential equations given by equations 5.37�5.39. There are
several reasons why straightforward integration is not likely to produce good
results. First, as we described in the previous section, we should use quaternions
for orientations to improve numerical stability and avoid singularities of three-
parameter representations of orientations. Second, we would like to enforce all
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the constraints on the contact point curves given by equations 5.15 and 5.25. By
integrating the values of the radius function at the contact points, we would not
be able to use these constraints. So instead, we integrate the β̇i's. At each time
step we compute ri from βi. We then compute di and ei from equation 5.19.
From ri, di and ei we compute a corrected estimate for βi using equation 5.17. We
can compute β̇i from equations 5.15 and 5.25. These equations provide 12 linear
constraints for 9 unknowns. We compute a least squares solution to this system
of equations.

We de�ne the error in the state estimate to be the weighted sum of (1) the
residual of the least squares solution for β̇i, and (2) the di�erences between the
estimate for βi and the corrected estimate. We search for the initial conditions
of the system of di�erential equations describing the shape and motion by mini-
mizing the integral of the error over a short time interval starting at time t = 0.
The search is split up in two stages. First we sample uniformly random over all
possible orientations and all possible values of the radius function within a certain
range. We keep track of the sample that results in a minimal error. In evaluating
a new sample we can stop integration once the error integral exceeds a previously
found minimum. In our simulations we would only have to take a couple of
integration steps for each sample after having taken a few thousand samples. In
this manner we can quickly evaluate thousands and thousands of guesses for the
initial conditions. In the second stage we perform several Nelder-Mead sim-
plex searches for the minimum error near the minimum found in the �rst stage.
With each simplex search we take the minimum found in the previous search
and lengthen the time interval over which the error is integrated. The purpose
of this approach is twofold. First, for the simplex search to return a minimum
the function we are minimizing needs to be su�ciently smooth. If we pick the
length of the time interval to be large, the neighborhood around the true initial
values for which this is true is very small. A small error in the initial conditions
will make the di�erential equations very unstable after a number of integration
steps, resulting in chaotic behavior and large values for the error integral. Second,
evaluating the error function over a large time interval is very expensive. So we
try to get close to a minimum by �rst minimizing the error function over smaller
intervals. It is possible that our error metric converges to a local minimum, but
this has not been observed in our simulations. If shape and motion aliasing is
possible in general remains an open problem.

Figure 5.3 shows the motion of an ellipsoid supported by three palms. The
palms are at 60 degree angles with the horizontal plane. The rotational axes
are at 60 degree angles with each other. The radii of the axes of the ellipsoid
are 2.5, 2, and 1. One problem with simulating this system without friction is
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Figure 5.3: An object rolling and sliding on immobile palms with gravity and
contact forces acting on it. The object is given some initial rotational velocity.
The object is shown at t = 0, 0.2, . . . , 4.4 (from left to right, top to bottom). The
viewpoint is above the palms, looking down.

that if the palms are moving they continuously increase the kinetic energy of the
object. In our simulations the ellipsoid breaks contact before a signi�cant part
of the object is recovered. To avoid this problem, we keep the palms in the same
position and give the ellipsoid some initial velocity. In �gure 5.3 the object has
an initial rotational velocity of (0, 0.3, 0.3)T. In the search for initial conditions
we assume the initial rotational velocity is known. This is, of course, not very
realistic. If we would model friction, then moving the palms would become
feasible and we could start the system with the object at rest. In that case the
rotational velocitywould be zero. Our current program searches a six dimensional
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(a) The radius function values at the
contact points.
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Figure 5.4: Di�erences between real and recovered shape and motion. Real
values are plotted as solid lines, observed values as dashed lines.

space: three dimensions for orientation and three for the values of the radius
function at the contact points. The reconstructed shape and motion are shown
in �gure 5.4. Our program found a di�erent, but equally valid initial orientation
for the ellipsoid. Because of the symmetries of the ellipsoid, rotations of 180
degrees around the principal axes result in orientations that are indistinguishable:
the resulting rotational velocity and values for the radius function are identical
(up to numerical error).

5.6 Shape Approximations
Given the recovered motion and contact curves we can also give a lower and
an upper bound on the volume occupied by the entire shape. Since we assume
the object is convex, the convex hull of the contact curves in the object frame
is a lower bound on the shape. Figure 5.5 shows the lower bound on the shape
obtained from the example in the previous section.
We can obtain an upper bound by observing that at each contact point the

corresponding palm plane introduces a half-space constraint: the object has to
lie entirely on one side of the plane. Clearly, the intersection of half-spaces
along the contact curves in the object frame forms an upper bound on the
shape. Computing the intersection of half-spaces can be reduced to a convex
hull problem as follows. Suppose we have a set of n points on the contact curves
and the unit normals at these points. Let pi, i = 1, . . . , n be one of the contact
points and ni its corresponding unit normal. The half-space constraint at point i
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(a) Reconstructed shape (b) Projection onto X-Y plane

(c) Projection onto X-Z plane (d) Projection onto Y-Z plane

Figure 5.5: The convex hull of the contact curves gives a lower bound on the
volume occupied by the object. The true shape of the object is shown as a
wire-frame model.

is then

nixx + niyy + nizz − wi < 0,

where wi = ni · pi > 0. We can dualize the tangent plane nixx + niyy + nizz −
wi = 0 to the point p̄i = (nix/wi, niy/wi, niz/wi)T. The dual of the convex hull
of the p̄i's is the desired intersection of the half-spaces. The dual of the convex
hull can be computed by either computing the dual planes of all the vertices of
the convex hull or by computing the dual points of the planes tangent to the
faces of the convex hull. In the general case, when some wi's are negative, this
approach does not work and we need a more complex algorithm (that still runs
in O(n log n) time, though). See (Preparata and Shamos, 1985) for details. Note
that we can obtain slightly tighter upper and lower bounds if we are given bounds
on the curvature of the object.
These bounds could form the basis for amanipulation strategy. Having bounds

makes it possible to speculate about the outcomes of actions. Suppose we would

80



Figure 5.6: Two spherical palms holding an object.

like to estimate the entire shape. One objective for a planner could be tominimize
the di�erence between the upper bound and lower bound. A simple `greedy'
planner would always try to move the contact points toward points on the lower
boundwith the largest distance to the upper bound. A smarter planner would also
take into account the path length, such that the palms would minimize nearby
di�erences between the bounds before trying to minimize faraway di�erences.
This assumes we have some reasonable metric to measure distance between
palm/object con�gurations. This manipulation strategy is reminiscent of some of
the work in geometric probing, but unlike probing algorithms our manipulation
strategy continuously `probes' the object. The palms cannot instantaneously move
from one con�guration to another.
Let us now consider how these bounds change if we change the shape of

the palms. We can use the shape of the palms to get tighter upper bounds on
the shape of the unknown object. Suppose we have spherical palms. Figure 5.6
shows two spherical palms holding an object. Instead of taking intersections of
half-spaces, we can now use intersections of spheres as an upper bound. The
contact point on palm i can be written as

ci = biRi

cos si1 cos si2
sin si1 cos si2

sin si2

 , (5.42)

where bi is the radius of sphere/palm i, and (si1, si2) are the spherical sensor co-
ordinates. We can obtain expressions for ċi by di�erentiating the right-hand side
of equation 5.42 with respect to Ri and si. The solution for the dynamics of the
object would change slightly with spherical palms, but the solution for the shape
and motion of the object would remain structurally the same. Equations 5.14
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and 5.15 show clearly how the solution for the shape of the object depends on the
motion of the contact points.
If we allow some of the palms to be convex, we could actually recover con-

cavities on the object provided the radius of curvature along the concavities is
larger than the radius of the palm. Allowing the object to have concavities would
invalidate the upper bound derived above. We can de�ne a new upper bound
as the intersection of half-spaces at those points on the contact curves that are
also on the boundary of the convex hull of the curves. Assuming the palms are
in�nite rays this is a true upper bound even if there exists protrusions between
di�erent parts of the shape that have been recovered, because the protrusions
cannot intersect the palms. We can also de�ne other approximate representa-
tions of the shape of the object that may be closer to the true shape. Let us
assume that instead of continuous contact curves we have a �nite set of points
along those curves. Based on this set of points we can de�ne a family of α-shapes
(Edelsbrunner and Mücke, 1994). One can think of α-shapes as a generalization
of the convex hull. Suppose we compute a Delaunay triangulation of the set
of points. Then informally, for a given value of α the corresponding α-shape is
equal to the triangulation minus the triangles that a sphere with radius α can pass
through without intersecting any of the vertices. The entire family of α-shapes
for a set of n points can be computed in O(n2). This family oh α-shapes can be
seen as a set of interpretations. Another way to represent the shape is to compute
a smooth interpolated surface. There are many ways to smoothly interpolate a
point set. We could use splines or iterative methods such as principal surfaces, an
extension of principal curves (Hastie and Stuetzle, 1989; LeBlanc and Tibshirani,
1994). Splines and principal curves can also be used in the planar case, of course.
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C h a p t e r 6

Conclusion

6.1 Contributions
This thesis has shown how a robot can reconstruct the local shape of an unknown
smooth convex object with strictly positive curvature along the surface. The
object is manipulated by palms covered with tactile sensors. The object is not
immobilized by the palms, but instead moves around as the contact forces and
gravity act on it. This is a novel way to combine manipulation and tactile sensing
that allows for a continuous interaction between manipulation and sensing.
In chapter 3 we presented the analysis, simulation results and experimental

results for the quasistatic case. We derived expressions for the values of the
radius function at the contact points and the rotational speed of the object. This
completely describes the shape and motion of an unknown object as a system of
di�erential equations. The simulation results showed that our approach works
well. We showed that �nding the initial conditions of this system of di�erential
equations corresponds to a 1D search for the center of mass: the center of mass
has to lie on the vertical line through the intersection of the lines of force at the
contact points. Further research is needed on �nding these initial conditions:
we can �nd a minimum of an error measure along this line, but it is not known if
this is a global minimum.
Our experimental results suggest that our approach could also work in prac-

tice. The reconstructed shape was close to the actual shape, despite signi�cant
errors in the reconstructed motion of our experimental object. These errors
were caused in part by violations of the assumptions, the most important one
being the no-friction assumption. Once we have modeled friction, we expect the
performance of our shape reconstruction method to improve considerably.
It is possible that the motion of the object has discontinuities, even if the

motion of the palms is continuous. This happens when a local minimum of the
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potential energy of the object becomes a local maximum as the palms rotate.
These discontinuities in the motion of the object result in di�erent disconnected
or overlapping pieces of the shape. We presented a method for piecing these
di�erent segments together. This method tries to minimize the errors in the
constraints on the motion and shape of the object and at the same time it tries to
minimize the area between segments that overlap. This method can be useful to
consolidate large amounts of tactile data. With only a few small segments, this
method will arrange the di�erent segments to not overlap. In general, this may
not be a correct interpretation of the sensor data.
The shape of unknown objects can be reconstructed up to symmetry in the

radius function. Symmetries in the diameter function1 do not pose a problem
(like they do for parallel jaw grippers). It is possible, though, that there exist com-
binations of shapes and motions that result in the same sensor values. Since the
mass properties are global properties it seems that this can only happen for very
speci�c control inputs; changing the control inputs slightly should disambiguate
di�erent interpretations.
In chapter 4 we addressed the dynamic case, where force/torque balance is no

longer assumed. We established that it is possible to reconstruct the shape locally
in this case too. By using results from non-linear control theory, we showed that
the system formed by the palms and the object is observable. This means that
there exists an observer (or state estimator) that can correct small errors and �lter
out noise in the state estimate. We �rst proved observability of the general and
case and then showed that certain special cases are also observable. Constructing
an observer is nontrivial. We constructed an observer for the special case where
the palms are moving at the same rate. This is based on Newton's method for
root �nding. This observer performed very well in simulation. If both palms are
motionless, the local shape is still observable. However, the construction of an
observer for this case is very nontrivial and of limited practical value.
In chapter 5 we showed that the results for planar shapes can be extended

to three dimensions. One important di�erence from the planar case is that we
can not expect a complete reconstruction of a 3D shape in �nite time with point
contacts. We presented various bounds and shape approximations that given the
curves traced out by the contact points on the surface of the object give di�erent
interpretations of the global shape of the object. Another big di�erence with the
planar case is that in 3D there are fewer constraints on the shape and motion of
the object. As a result, the quasistatic approach from chapter 3 cannot be applied.
We derived twelve constraints on the velocity of the three contact point curves.

1Reuleaux (1876) showed that there existmanydi�erent objectswith the same constant diameter
function.
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quasistatic dynamic constant speed �xed palms
2D I OC OD OC
3D X I I I

Table 6.1: Summary of shape reconstruction results for di�erent types of dy-
namics.

Since the coordinates of the curves at the contact points can be described with
nine unknowns, we used the three additional constraints to improve the stability
of the integration of the system dynamics. We do this by computing a least
squares solution to the twelve constraints. Although we have extra constraints,
we still do not have a large enough number of constraints to write the system
dynamics in state-space form. As a result we cannot test for observability and the
least-square solution described above is not guaranteed to be the best solution.
A more abstract notion of observability is needed to describe what information
the additional constraints give about the unknown state variables.
Table 6.1 summarizes the results of this thesis. In the quasistatic case

force/torque balance is assumed. In the dynamic case we model all the forces and
accelerations. The last two columns are special cases of the dynamic case. We
do not assume any restrictions on the motion of the object, but put restrictions
on the motions of the palms in these two cases. In the penultimate column the
palms are assumed to move with constant speeds. The last case summarizes the
case where the palms stay put. The meaning of the table entries is:

X: No solution exists.
I: We can solve for the shape and motion by integration of a system of di�er-
ential equations.

OC: The system is observable in terms of the control vector �elds.
OD: The system is observable in terms of the drift vector �eld.

Systems that are observable can also be solved by integration. With pure integra-
tion wemay only be able to detect an error in our state estimate. Using an observer
is preferable to pure integration, because an observer may be able to correct small
errors and �lter out noise. In 2D two palms are su�cient, in 3D three palms.
Ultimately we would like to combine our approach with the work on ma-

nipulation by pure rolling by Bicchi and colleagues (Bicchi et al., 1999). We are
working toward a framework that formally describes the shape and motion of an
unknown object with changing contact modes as it is manipulated and sensed by
a robot.
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(a) No friction.

α

vc

Fc

(b) With friction, ob-
ject sliding right.

Fc

α

vc

(c) With friction, object
sliding left.

Figure 6.1: Direction of the contact force in the absence and presence of
friction.

6.2 FutureDirections
Removing Assumptions
In this thesis we assumed there was no friction and that the unknown object
being manipulated by the palms was smooth and convex. In this section we
will describe how these assumptions can be removed and how this changes the
problem of reconstructing the shape and motion of the object.
Adding friction to the model does not fundamentally change the structure of

the solutions for shape and motion. If a contact point is moving, the contact
force lies on the edge of the friction cone, opposite the direction of the contact
point velocity (see �gure 6.1 for an illustration of the planar case). The tangential
component is equal to the coe�cient of friction, µ, times the normal component.
In �gure 6.1 tan α is equal to µ. So if we would know µ we could solve for
the acceleration and angular acceleration from the dynamics equations. The
quasistatic approach from chapter 3 would no longer work: for a given palm
con�guration there is now an in�nite number of stable poses. We plan to recover
the value of the friction coe�cient using a nonlinear observer by making µ part
of the state vector (like the radius of gyration in chapter 4).
If one contact point is notmoving (i.e., the contact force lies inside the friction

cone), we can write the shape and motion of the other contact point relative to
the �xed contact point. We only need position and velocity constraints for
this (Erdmann, 1999). If neither contact point is moving, we can not observe
anything about the shape unless we rotate the palms about the contact points.
We can always force at least one of the contact points to change by varying the
angles between the palms. Modeling friction means we have to distinguish all the

86



(a) Two edge-vertex con-
tacts.

(b) One edge-vertex con-
tact.

(c) One edge-edge contact,
one edge-vertex contact.

Figure 6.2: Di�erent types of contact.

di�erent modes for both contact points: left sliding, right sliding, not moving.
Instantaneously this may not be possible, but we hope that given enough sensor
data we can �nd a shape such that its motion is consistent with all sensor data.
We also need to determine whether the contact point is rolling or not.

If we remove the smoothness constraint, we also have to distinguish di�erent
cases. Figure 6.2 shows examples of non-smooth contact modes. Instantaneously
we can not determine if a contact point is a corner of the object or not. However,
we can write out the system behavior in state-space form for each of the di�erent
cases and construct an observer for each case. For a given state estimate we can
run all observers in parallel and see which one minimizes the error in the output
the most. We also need to detect when the contact mode changes. Note that the
system can not instantaneously change from one contact mode to every other
contact mode. This observation can be used to eliminate certain interpretations
of the sensor data. Althoughwe canmodel edge-edge contact, with our touchpads
we can only measure the centroid of contact. With edge-edge contact we expect
to see discontinuities in the sensor values, but we may not be able to distinguish
these from the discontinuities due to discrete changes in orientation. Generally
speaking, the non-smoothness provides additional constraints and features that
we can use to eliminate uncertainty about the object's shape and motion. By
assuming objects are smooth we are limiting ourselves to the hardest case; the
solution for the shape and motion in all of the non-smooth cases is much simpler.
What remains an open problem is whether we can e�ectively track the changes
in contact modes.
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Di�erent Representations of Shape
The contact kinematics lead naturally to a description of the shape of an object in
terms of the curvature at the contact points. One disadvantage of this approach is
that the shape has an in�nite number of degrees of freedom. Although this allows
us to reconstruct any smooth convex shape, in many cases it may be su�cient to
have a reasonable approximation. We could, for instance, pick n control points
that are radially equally spaced. A closed spline interpolation through those n
points is then one possible shape approximation. So now the shape has only n
degrees of freedom. If we want to do something fancier, we could use Fourier
and wavelet transforms. There has been a large amount of research in computer
vision and pattern matching on representing shapes. With future research we
would like to explore how results in those areas can be used for tactile shape
reconstruction. In section 4.7 we mentioned alpha shapes and principal curves as
approximate shape representations. We would also like to �nd ways to use these
di�erent representations to guide the manipulation.

Di�erentObservers
Observer design for nonlinear systems is still an active area of research. The
observer described in chapter 4 is relatively simple. It is easy to implement, but
is computationally very expensive. In future research we would like to develop
observers that do not rely as heavily on numerical methods. Many observers
use the following approach. For a given state q we can de�ne a transform
Z : q → z, such that the transformed system is in some canonical form. Often
the transformed system looks like

ż = Az + f (z, u) (6.1)
y = Cz. (6.2)

That is, the system is almost linear, except for some nonlinearities that depend
on the controls. To guarantee exponential convergence certain constraints on f
need to be satis�ed. Inmany cases the control inputs can be ignored, if we assume
the control inputs are piecewise constant. Typically, the coordinate transform is
valid only locally and needs to be recomputed at each time step. An example of
this type of observer can be found in e.g. (Gauthier et al., 1992). Gauthier et al.
assumed a single-output system without inputs, but Bornard and Hammouri
(1991) showed that this observer can be generalized to multi-input-multi-output
systems. If we assume the sensor values are reliable, we can construct a so-
called reduced-order observer, which, as the name suggests, only tries to observe
those state variables which are not part of the output (Besançon and Hammouri,
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1995). The observers mentioned above all use a Lie-algebraic approach. Other
common techniques include: Lyapunov methods (Thau, 1973; Kou et al., 1975),
and linearization by nonlinear output injection (Krener and Isidori, 1983; Bestle
and Zeitz, 1983). We would like to explore how these techniques can be applied
to the tactile shape reconstruction problem.

Tactile slam
Simultaneous localization andmapping (slam) is an important problem inmobile
robotics. The slam problem can be stated as: how can a mobile robot e�ciently
build a map of an unknown environment and at the same time keep track of
where it is on the map? A common failure mode is that a robot returns to a place
where it has been before, but classi�es it as new place on the map. With the
tactile shape reconstruction method proposed in this thesis we run into a similar
problem. If the sensors cover the same part of the surface many times, there
is no constraint that forces the contact point curves to lie on the same surface.
So we need a strategy to consolidate all data into one surface (or a probability
distribution of surfaces, if one prefers a probabilistic approach). Note that the
presence of non-smooth features on the surface will make the tactile localization
problem signi�cantly easier (Okamura and Cutkosky, 2001). In section 3.7 we
proposed a method to consolidate con�icting data by averaging, but we would
like to do better. We expect that some results for the slam problem will transfer
to tactile shape reconstruction.
In computer vision and pattern matching the localization problem is often

called the registration (or correspondence) problem. From this area we may be
able to borrow techniques to compare di�erent shapes. For instance, we could
use distance metrics that are invariant with respect to rotation, scale, or both
(Arkin et al., 1991; Huttenlocher and Kedem, 1990).

Other Sensing Strategies
Besides the model of planar palms, there are many other ways to reconstruct the
shape of an unknown moving object with tactile sensors. One extension is to
change the shape of the palms. In the previous chapters we described how the
model can be extended to circular and spherical palms. An advantage of concave
palms is that with less manipulation we can cover more of the shape, since a
grasp with these palms comes closer to an enveloping grasp. Further research
is needed to quantify this claim. The minimum radius of curvature along the
palms should be chosen such that there is always just one contact point on each
palm. However, if the palms can detect multiple contacts, it makes more sense
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object

robot gripper

pivot

tactile sensor

Figure 6.3: Dragging an object over a tactile sensor with a pivoting grasp.

to maximize the number of contact points (e.g., by using deformable palms).
Figure 6.3 shows an entirely di�erent sensing strategy. An object is grasped by

a robot arm using a pivoting gripper (Rao et al., 1994, 1995). With such a gripper
the object is free to rotate around the line through the grasp contact points. The
sensing strategy consists of dragging or pushing the object over a surface coated
with tactile sensors. We think it would be interesting to determine whether this
system is observable as well. Note that we need to be able to establish a stable
grasp �rst.
It is also possible to combine techniques from pose and shape recognition

with our approach. Jia and Erdmann (1999) describe how to recover the pose of a
known object by pushing it with a �nger covered with tactile sensors. With our
palms we can do this by keeping some palms �xed and using one of the palms
to push the objects. This could prove to be useful for reconstructing unknown
objects as well. Suppose we have partially recovered an unknown shape. Then
we can use Jia and Erdmann's approach to perform localization.
Another possibility is to turn the whole model (literally) upside-down: we can

reconstruct a surface by driving on it while measuring the contact forces. It turns
out that we can use the same approachwe used formanipulating unknown objects
for reconstructing unknown terrain as well. Suppose we have a planar mobile
robot with two point-size wheels. Assume these wheels are in pure rolling contact
(i.e., no slip) with a smooth unit-speed curve x : R → R2. At each contact point
i we de�ne a coordinate frame [ti, ni] using the local tangent and normal of the
curve. Each frame can be characterized by the angle φi between the tangent and
the horizontal axis. The only control of the robot is the torque of wheel 1. This
torque produces a `pulling force' along the tangential direction with magnitude
f0. See �gure 6.4 for a sketch. The forces acting on the robot are gravity, normal
forces and the force produced by the motor that is driving the front wheel. The
net force on the robot is
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n1
t1

n2 t2

d1 d2

x(s)

cm

gravity

Figure6.4: Amobile robot consisting of twomass-less rods d1 and d2 connected
at the center of mass cm in contact with a curve. The wheels are at the end points
of d1 and d2.

F = f0t1 + f1n1 + f2n2 + Fg = ma, (6.3)

where f0 is the magnitude of the force produced by the motor, f1 and f2 are the
magnitudes of the normal forces and Fg is the gravitational force. The net torque
on the robot is

τ = f0d1 × t1 + f1d1 × n1 + f2d2 × n2

= − f0d1 · n1 + f1d1 · t1 + f2d2 · t2 = mρ2α, (6.4)

where di, i = 1, 2, is the vector from the center of mass to wheel i. For simplicity,
assume d1 and d2 are of equal length and make a right angle with each other.
We assume that the wheels always stay in contact with the curve. This

imposes constraints on (derivatives of ) the position of the robot. Let cm denote
the position of the center of mass, xi the point on the curve in contact with wheel
i, and vi the velocity of contact point i. The position constraints for wheel i can
be written as

cm + di = xi (6.5)
v + ω × di = viti (6.6)
a + α × di + ω × (ω × di) = v̇iti + κiv2

i ni (6.7)

The right-hand side of the last constraint follows from the Frenet formulas.
We will assume that the control input f0 is chosen such that the velocity at
wheel 1 is constant. Let us the de�ne the state q of the system as the vector
(φ0, ω, x1, x2, v2)T. The behavior of the system can then be described by the
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following system of di�erential equations

φ̇0 = ω (6.8)
ω̇ = α (6.9)
ẋ1 = v1t1 (6.10)
ẋ2 = v2t2 (6.11)
v̇2 = (a + α × d2 − ω2d2) · t2 (6.12)

Note that since we drive wheel 1 at a constant speed, v̇1 is equal to zero and
we do not need to make v1 part of the state. It can be shown that if we can
measure the magnitude of the one of the contact forces, we can solve for the
acceleration and angular acceleration from the dynamics described above. We
can measure the contact force with strain gauges. The above system is not in
state-space form, since we do not have an expression for the rate of change in
the contact force as a function of the state variables. Further research is needed
to either reformulate this problem or construct another kind of state estimator
with observer-like properties.

92



A p p e n d i x A

Derivations

A.1 Quasistatic ShapeReconstruction

Curvature at the Contact Points

The expressions for the curvature at the contact points can be found by di�er-
entiating the generalized contact support functions:

r̃′1 = (x′1 − x′2) · n1 + (x1 − x2) · n′1
= v2t2 · n1 − (x1 − x2) · t1

= −v2 sin φ2 − d1 (A.1)
˙̃r1 = (ẋ1 − ẋ2) · n1 + (x1 − x2) · ṅ1

= (θ̇x′1 − (θ̇ + φ̇2)x′2) · n1 + (x1 − x2) · (θ̇n′1)

= −v2(θ̇ + φ̇2) sin φ2 − θ̇d1 (A.2)

r̃′2 = (x′1 − x′2) · n2 + (x1 − x2) · n′2
= −v1t1 · n2 − (x1 − x2) · t2

= −v1 sin φ2 − d2 (A.3)
˙̃r2 = (ẋ1 − ẋ2) · n2 + (x1 − x2) · ṅ2

= (θ̇x′1 − (θ̇ + φ̇2)x′2) · n2 + (x1 − x2) · ((θ̇ + φ̇2)n′2)

= −v1θ̇ sin φ2 − (θ̇ + φ̇2)d2 (A.4)
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From these expressions it follows that the curvature at the contact points can be
written as

v1 = −
r̃′2 + d̃2

sin φ2
= −

˙̃r2 + (θ̇ + φ̇2)d̃2

θ̇ sin φ2
(A.5)

v2 = −
r̃′1 + d̃1

sin φ2
= −

˙̃r1 + θ̇d̃1

(θ̇ + φ̇2) sin φ2
(A.6)

Derivatives of Center ofMass andCenter of Rotation
Recall the following expressions for the center of mass and the center of rotation:

cm(φ0, φ1, φ2) = −r̃2t̄1/ sin φ2 − R0x1 (A.7)
cr(φ0, φ1, φ2) = −(r̃2t̄1 + d̃2n̄1)/ sin φ2 (A.8)

We are interested in the partial derivatives of these expressions with respect to
φ0, because they tell us something about the stable poses of the object. In the
previous section we computed derivatives with respect to curve parameters. The
partial derivative of the curve parameter θ with respect to φ0 is equal to -1. This
follows from θ = φ1 − φ0 −π/2 (equation 3.1, p. 19). The partial derivatives with
respect to φ0 of equations A.7 and A.8 are therefore

∂cm

∂φ0
= r̃′2t̄1/ sin φ2 −

(
∂

∂φ0
R0
)
x1 + v1t̄1 (A.9)

= −(v1 sin φ2 + d2)t̄1/ sin φ2 −
(

∂
∂φ0

R0
)
x1 + v1t̄1 (A.10)

= − d̃2t̄1

sin φ2
−
(

∂
∂φ0

R0
)
x1, (A.11)

∂cr

∂φ0
= (r̃′2t̄1 + d̃′2n̄1)/ sin φ2 (A.12)

= (−(v1 sin φ2 + d2)t̄1 + (v1 cos φ2 + v2 + r2)n̄1)/ sin φ2 (A.13)
=
(
− v1n̄2 + v2n̄1 + r̃2n̄1 − d̃2t̄1

)
/ sin φ2. (A.14)

The derivative of d̃2 can be obtained in a similar fashion as the derivatives of r̃1
and r̃2. Notice that equation A.11 is very similar to cm − cr:

cm − cr = d̃2n̄1/ sin φ2 − R0x1 (A.15)

94



In fact, upon careful inspection we see that

∂
∂φ0

R0 =
(
− sin φ0 − cos φ0
cos φ0 − sin φ0

)
=
(

0 −1
1 0

)
R0 (A.16)

n̄1 =
(

0 −1
1 0

)
t̄1 (A.17)

So we can write the partial derivative of the center of mass as

∂cm

∂φ0
=
(

0 −1
1 0

)
(cm − cr) . (A.18)

Rotational Velocity
In section 3.3 it was shown that the force/torque balance constraint can be written
as

r1 sin φ1 − d1 cos φ1 = −d̃2
sin φ1
sin φ2

. (A.19)

Di�erentiating the left-hand side of this equation we get:
d
dt (r1 sin φ1 − d1 cos φ1) =

= (ṙ1 + d1φ̇1) sin φ1 + (r1φ̇1 − ḋ1) cos φ1 (A.20)

= d1(φ̇1 − θ̇) sin φ1 + r1(φ̇1 − θ̇) cos φ1 −
˙̃r2+(θ̇+φ̇2)d̃2

sin φ2
cos φ1 (A.21)

= d1φ̇0 sin φ1 + r1φ̇0 cos φ1 −
˙̃r2+(φ̇1+φ̇2−φ̇0)d̃2

sin φ2
cos φ1 (A.22)

= φ̇0
(
d1 sin φ1 + r1 cos φ1 + d̃2

cos φ1
sin φ2

)
− ˙̃r2+(φ̇1+φ̇2)d̃2

sin φ2
cos φ1 (A.23)

The step in equationA.21 follows fromproperties of the contact support function:
r′(θ) = −d(θ) and d′(θ) = r(θ)− v(θ). The derivative of the right-hand side of
equation A.19 can be written as

d
dt (−d̃2

sin φ1
sin φ2

) =
(
− ˙̃d2 sin φ1 − d̃2φ̇1 cos φ1 + d̃2φ̇2 sin φ1 cot φ2

)
/ sin φ2

(A.24)

Equating expressions A.23 and A.24, substituting expression 3.18 for d1, and
solving for φ̇0 we arrive at the following expression for φ̇0:

φ̇0 =
˙̃r2 cos φ1 − ˙̃d2 sin φ1 + d̃2φ̇2

sin φ12
sin φ2

r1 sin φ12 + (r2 + r̃2) sin φ1 + d̃2 cos φ1
, (A.25)

where φ12 = φ1 + φ2.
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A.2 Observability of the PlanarDynamic Case
In the general planar dynamic case the di�erentials dLg1s1, dLg2s2, dLg1 Lg1s1,
and dLg2 Lg2s2 and the di�erentials of the components of the output function
will span the observability codistribution dO. To compute these di�erentials we
used Maple V.7 (http://www.maplesoft.com), a symbolic mathematics program.
To verify if these di�erentials span the observability codistribution, we consider
the part of the state space that is not part of the output: r1, r2,ω0, and ρ. In other
words, the �rst three components and the last component of the state vector.
Below we de�ne a matrix A that has the di�erentials dLg1s1, dLg2s2, dLg1 Lg1s1,
and dLg2 Lg2s2 as columns. From those columns we only need the �rst three
components and the last component. If this matrix has full rank, or, equivalently,
if the determinant of A is nonzero, then the system is observable. The symbolic
expression for this determinant can be computed, but is very complicated. Below
we substitute values for all the variables to check that the determinant does not
evaluate to 0.

[
># include linear algebra functions
with(linalg):



>n:=10: # de�ne state vector and control vector �elds
q:=vector([r1,r2,omega0,s1,s2,phi1,omega1,phi2,omega2,rho]):
g1:=[0,0,-d1/(m∗rho∧2∗s1),(rho∧2+d1∧2)/(m∗rho∧2∗s1∗(omega1-omega0)),

(rho∧2∗cos(phi2)-d1∗d2)/(m∗rho∧2∗s1∗(omega1+omega2-omega0)),
0,0,0,0,0]:

g2:=[0,0,d2/(m∗rho∧2∗s2),(rho∧2∗cos(phi2)-d1∗d2)/(m∗rho∧2∗s2∗(omega1-
omega0)),(rho∧2+d2∧2)/(m∗rho∧2∗s2∗(omega1+omega2-omega0)),
0,0,0,0,0]:># express d1 and d2 as functions of state variables

d1:=(r1∗cos(phi2)+r2)/sin(phi2)-s1:
d2:=-(r2∗cos(phi2)+r1)/sin(phi2)+s2:

[
># de�ne what a differential is
differential:= proc(vec,expr) map(proc(x) simplify(diff(expr,x)) end, vec): end:

[
># de�ne what a Lie derivative is
lie_derivative:= proc(vec,expr) innerprod(differential(q,expr),vec); end:
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

># Lvec returns an array of repeated Lie derivatives, an array of differentials of those
Lie derivatives, and a matrix with those differentials as columns
Lvec := proc(expr,vec,m)

global q, f, n:
local LF, dLF, LFm, i:
LF:=array(1..n): dLF:=array(1..n):
LF[1]:=expr:
dLF[1]:=differential(q,LF[1]):
for i from 2 to m do
LF[i] := innerprod(vec,evalm(dLF[i-1])):
dLF[i] := differential(q,LF[i]):

od;
LFm := array(map(proc(x) convert(x,'list') end, convert(dLF,'list'))):
LF,dLF,LFm:
end:[

># compute repeated Lie derivatives and differentials
(lg1,dlg1,lg1m):=Lvec(s1,g1,3): (lg2,dlg2,lg2m):=Lvec(s2,g2,3):

># form a matrix for that part of the state space that the differentials need to cover
A:=array([[dlg1[2][1],dlg1[2][2],dlg1[2][3],dlg1[2][10]],

[dlg1[3][1],dlg1[3][2],dlg1[3][3],dlg1[3][10]],
[dlg2[2][1],dlg2[2][2],dlg2[2][3],dlg2[2][10]],
[dlg2[3][1],dlg2[3][2],dlg2[3][3],dlg2[3][10]]]):[

># compute the determinant of that matrix
Adet:=det(A):

># `simplify' this determinant
simplify(Adet);
−18(−12r13 cos(φ2)5ρ4r2ω1 − 4s1 sin(φ2)r12 cos(φ2)6ρ2r23ω0 −
42r12 cos(φ2)6s12r24ω2 − 2ρ4 cos(φ2)6r24ω0 + 12r13 cos(φ2)5ρ4r2ω0 +
12r1 cos(φ2)3r23ρ4ω0 + 18s14 cos(φ2)4r12s22ω2 − 6r24s12ρ2 cos(φ2)2ω0 +
12s1 sin(φ2)r2ρ4r12 cos(φ2)2ω0 − 12s1 sin(φ2)r2ρ4r12 cos(φ2)2ω1 −
12s1 sin(φ2)r22ρ4 cos(φ2)5r1ω1 + . . . (several pages of output omitted)># substitute random numbers for the variables and evaluate the determinant
evalf(subs({m=1,rho=.5,phi2=2,s1=1,s2=2,r1=1.5,r2=1.5,omega0=1,omega1=2,
omega2=3},Adet));
25.67009841># singularity 1: contact point 1 not moving, omega1-omega0=0
evalf(subs({m=1,rho=.5,phi2=2,s1=1,s2=2,r1=1.5,r2=1.5,omega0=1,omega1=1,
omega2=3},Adet));
Error, numeric exception: division by zero
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># singularity 2: contact point 2 not moving, omega1+omega2-omega0=0
evalf(subs({m=1,rho=.5,phi2=2,s1=1,s2=2,r1=1.5,r2=1.5,omega0=2,omega1=1,
omega2=1},Adet));
Error, numeric exception: division by zero># palms move at same rate, omega2=0
evalf(subs({m=1,rho=.5,phi2=2,s1=1,s2=2,r1=1.5,r2=1.5,omega0=1,omega1=2,
omega2=0},Adet));
1647.940473># palm 1 is not moving, omega1=0
evalf(subs({m=1,rho=.5,phi2=2,s1=1,s2=2,r1=1.5,r2=1.5,omega0=1,omega1=0,
omega2=2},Adet));
1634.446156

A.3 Force/TorqueBalance inThreeDimensions
In two dimensions, force/torque balance of an object resting on two palms can be
interpreted in the following geometric way: the object is in force/torque balance
if and only if the lines through the normals at the contact points intersect the
vertical line through the center of mass at one common point. In other words, we
can �nd the X-coordinate of the center of mass if we know the contact points and
the contact normals. For a three-dimensional object resting on three palms one
can derive a similar constraint. The derivation of the geometric interpretation
in two dimensions is analogous to the three-dimensional case.
Let n̄i be the normal at contact point ci, i = 1, 2, 3 and let fi be the magnitude

of the normal force at contact point ci. Finally, let cm be the position of the
center of mass. Without loss of generality we assume that the magnitude of the
gravitational force is 1. We can then write the force/torque balance constraint as:

Force balance: ∑ fin̄i = n̄z (A.26)

Torque balance: ∑ fi(ci − cm)× n̄i =
( 0

0
0

)
(A.27)

Here, n̄z =
( 0

0
1

)
is the normal parallel to the Z-axis. We also require that all fi's

are greater than or equal to 0. The solution for equation A.26 is

f1 =
(n̄2 × n̄3) · n̄z

(n̄1 × n̄2) · n̄3
, f2 =

(n̄3 × n̄1) · n̄z

(n̄1 × n̄2) · n̄3
, f3 =

(n̄1 × n̄2) · n̄z

(n̄1 × n̄2) · n̄3
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We can write the left-hand side of equation A.27 as

∑ fi(ci − cm)× n̄i = ∑ fici × n̄i −∑ ficm × n̄i

= ∑ fici × n̄i − cm × (∑ fin̄i)

= ∑ fici × n̄i − cm × n̄z

= ∑ fici × n̄i −
( cm2
−cm1

0

)
,

where cm1 and cm2 are the X- and Y-coordinate of cm. In other words, the X- and
Y-coordinate of cm can be written as

cm1 = −
(
∑ fici × n̄i

)
·
( 0

1
0

)
cm2 =

(
∑ fici × n̄i

)
·
( 1

0
0

)
,

where we substitute the solutions above for fi. So in three dimensions we can
compute the X- and Y-coordinate of the center of mass, if we know the positions
of the contact points and the contact normals.
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