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Abstract. We present a method to simultaneously reconstruct the shape and mo-
tion of an unknown smooth convex object. The object is manipulated by planar
palms covered with tactile elements. The shape and dynamics of the object can
be expressed as a function of the sensor values and the motion of the palms. We
present a brief review of previous results for the planar case. In this paper we show
that the 3D case is fundamentally different from the planar case, due to increased
tangent dimensionality. The main contribution of this paper is a shape-dynamics
analysis in 3D, and the synthesis of shape approximation methods via reconstructed
contact point curves.

1 Introduction

Robotic manipulation of objects of unknown shape and weight is very dif-
ficult. To manipulate an object reliably a robot typically requires precise
information about the object’s shape and mass properties. Humans, on the
other hand, seem to have few problems with manipulating objects of unknown
shape and weight, even without visual feedback. During the manipulation of
an unknown object the tactile sensors in the human hand give enough infor-
mation to find the pose and shape of that object. At the same time humans
can infer some mass properties of the object to determine a good grasp.
Manipulation and sensing continuously interact with each other. These ob-
servations are an important motivation for our research. Our long-term goal
is to develop combined manipulation and sensing strategies that allow robots
to interact more robustly with unknown or uncertain environments. In this
paper we present a model that integrates manipulation and tactile sensing.
We derive equations for the shape and motion of an unknown object as a
function of the motion of the manipulators and the sensor readings.

Figure 1 illustrates the basic idea for planar shapes. There are two palms
that each have one rotational degree of freedom at the point where they
connect, allowing the robot to change the angle between palm 1 and palm 2
and between the palms and the global frame. As the robot changes the palm
angles it keeps track of the contact points through tactile elements on the
palms.
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Fig. 1. A smooth convex object rest-
ing on two fingers that are covered
with tactile sensors.

In the next section we will give an overview of the related work in shape
reconstruction using tactile sensors. In section 3 we will briefly review planar
shape reconstruction, which has been described in more detail in previous
work [18, 19]. In sections 4 through 6 we will derive expressions for the shape
and motion of an unknown 3D object being manipulated by three palms. In
section 7 we will present some simulation results. Section 8 describes how we
can use the curves traced out by the contact points to construct bounds and
approximations of the entire shape. In section 9 we discuss how the model
can be extended to arbitrary palm shapes. Finally, in section 10 we conclude
and outline directions for future research.

2 Related Work

With tactile exploration the goal is to build up an accurate model of the shape
of an unknown object. One early paper by Goldberg and Bajcsy [11] described
a system requiring very little information to reconstruct an unknown shape.
The system consisted of a cylindrical finger covered with 133 tactile elements.
The finger could translate and tap different parts of an object.

Often the unknown shape is assumed to be a member of a parametrized
class of shapes, so one could argue that this is really just shape recognition.
Nevertheless, with some parametrized shape models, a large variety of shapes
can still be characterized. In [10], for instance, results are given for recovering
generalized cylinders. Allen and Roberts [2] model objects as superquadrics.
Roberts [23] proposed a tactile exploration method for polyhedra. In [6] tac-
tile data are fit to a general quadratic form. Finally, Liu and Hasegawa [15]
use a network of triangular B-spline patches.

Allen and Michelman [1] presented methods for exploring shapes in three
stages, from coarse to fine: grasping by containment, planar surface exploring
and surface contour following. Montana [20] described a method to estimate
curvature based on a number of probes. Montana also presented a control
law for contour following. Charlebois et al. [4, 5] introduced two different
tactile exploration methods. The first method is based on rolling a finger
around the object to estimate the curvature using Montana’s contact equa-
tions. Charlebois et al. analyze the sensitivity of this method to noise. With
the second method a B-spline surface is fitted to the contact points and nor-
mals obtained by sliding multiple fingers along an unknown object.
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Marigo et al. [16] showed how to manipulate a known polyhedral part
by rolling it between the two palms of a parallel-jaw gripper. Bicchi et al.
[3] extended these results to tactile exploration of unknown objects with
a parallel-jaw gripper equipped with tactile sensors. The two palms of the
gripper roll the object without slipping and track the contact points. Using
tools from regularization theory they produce spline-like models that best fit
the sensor data. The work by Bicchi and colleagues is different from most
other work on tactile shape reconstruction in that the object being sensed is
not immobilized. With our approach the object is not immobilized either, but
whereas Bicchi and colleagues assumed pure rolling we assume pure sliding.

A different approach is taken by Kaneko and Tsuji [13], who try to recover
the shape by pulling a finger over the surface. With this finger they can also
probe concavities. In [22, 21] the emphasis is on detecting fine surface features
such as bumps and ridges. Sensing is done by rolling a finger around the
object. Okamura et al. [21] show how one can measure friction by dragging
a block over a surface at different velocities, measure the forces and solve for
the unknowns.

Much of our work builds forth on [9]. There, the shape of planar objects
is recognized by three palms; two palms are at a fixed angle, the third palm
can translate compliantly, ensuring that the object touches all three palms.
Erdmann [9] derives the shape of an unknown object with an unknown motion
as a function of the sensor values. In our work we no longer assume that the
motion of the object is completely arbitrary. Instead, we model the dynamics
of the object as it is manipulated by the palms. Only gravity and the contact
forces are acting on the object. As a result we can recover the shape with
fewer sensors. By modeling the dynamics we need one palm less in 2D. In this
paper we will show that 3D objects can be reconstructed with three palms.
In the long term we plan to develop a unified framework for reconstructing
the shape and motion of unknown objects with varying contact modes.

3 Planar Shape Reconstruction

In this section we describe a method for reconstructing the shape and motion
of an unknown planar object. Let the unknown shape be parametrized by
the function x : [0, 2π] → R2, such that x(θ) is the vector from the center
of mass to the point on the surface where the outward-pointing normal n(θ)
is equal to (cos θ, sin θ)T . Let the tangent t(θ) be equal to (sin θ,− cos θ)T so
that [t,n] constitutes a right-handed frame. The projections of x(θ) onto the
normal and tangent are written as r(θ) and d(θ), respectively. The function
r is called the radius function. To reconstruct x it is sufficient to reconstruct
r: given the values of r at the contact points, the palm configurations, and
palm angles we can solve for the values of the d function. Moreover, we have
that r′(θ) = x′(θ) · n(θ)− x(θ) · t(θ) = −d(θ).
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Fig. 2. Experimental Results. (a) Ex-
perimental setup. (b) Partially recon-
structed shape. (c) Orientation mea-
sured by the vision system and the ob-
served orientation

The rate of change of a sensor value is due to the relative motion of the
object and the change of the contact point on the surface of the object. So
if we would know the motion of the object, we could solve for the change
of the contact point on the surface of the object. We can obtain the motion
of the object in two different ways. One way is to assume the dynamics are
quasistatic. At any point in time the object will be in force/torque balance.
This constraint has the following geometric interpretation: the center of mass
lies on a vertical line that passes through the lines of force at the contact
points. This allows us to solve for the X-coordinate of the center of mass
of the object. Assuming the object does not break contact, the object has
only one degree of freedom, and thus we can solve for the motion of the
object. This approach is described in more detail in [18]. Figure 2 shows
some experimental results of shape reconstruction based on this model for
the dynamics.

Another way to solve for the motion of the object is by analyzing the
full dynamics. Based on the wrenches exerted by the palms on the object we
can solve for the acceleration and angular acceleration of the object. Let q
be a vector describing the state of the system. It contains the values of the
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Fig. 3. Shape reconstruction with an observer based on Newton’s method. (a) The
reconstructed shape. (b) The absolute error in the radius function values, r1 and
r2, and the orientation of the object, φ0

radius function at the contact points, the rotational velocity of the object,
the sensor values, and palm angles. Then we can write the solution for the
shape and motion as a system of differential equations of the following form
[19]:

q̇ = f(q) + τ1g1(q) + τ2g2(q), (1)
y = h(q), (2)

where f , g1 and g2 are vector fields, and h is called the output function.
The output function returns the sensor readings. The vector fields g1 and
g2 are called the input vector fields and describe the rate of change of our
system as torques are being applied on palm 1 and palm 2, respectively, at
their point of intersection. The vector field f is called the drift vector field. It
includes the effects of gravity. In [19] we describe this system in more detail
and prove observability. If a system is observable, it is possible to construct
a state estimator (called an observer) that, given an initial estimate near the
true state, quickly converges to the true state as time progresses. In [17] we
describe an observer that uses Newton’s method to minimize the error in the
estimate. This observer is due to [25]. The error is defined as the integral over
a certain time interval of the squared norm of the difference in predicted and
real output function values. Figure 3 shows some simulation results obtained
using this observer. In this particular case the angle between the palms was
fixed and the motion of the palms was simply a counter-clockwise rotation.

4 Three-Dimensional Shape Reconstruction

Naturally we would like to extend the results from the planar case to three
dimensions. Although the same general approach can also be used for the 3D
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case, there are also some fundamental differences. First of all, the difference is
not just one extra dimension, but three extra dimensions: a planar object has
three degrees of freedom and a 3D object has six. Analogous to the planar case
we can derive a constraint on the position of the center of mass if we assume
quasistatic dynamics. This constraint gives us the X and Y coordinate of the
center of mass. However, assuming quasistatic dynamics is not sufficient to
solve for the motion of an unknown object: if the object stays in contact with
the palms it has three degrees of freedom, but the quasistatic dynamics give
us only two constraints. Another difference from the planar case is that in
3D we cannot completely recover an unknown shape in finite time, since the
contact points trace out only curves on the surface of the shape.

In 3D the surface of an arbitrary smooth convex object can be parame-
terized with spherical coordinates θ = (θ1, θ2) ∈ [0, 2π)× [−π

2 , π
2 ]. For a given

θ we define the following right-handed coordinate frame

t1(θ)=

− sin θ1

cos θ1

0

, t2(θ)=

− cos θ1 sin θ2

− sin θ1 sin θ2

cos θ2

, n(θ)=

cos θ1 cos θ2

sin θ1 cos θ2

sin θ2

. (3)

The function x : S2 → R3 describing a smooth shape can then be defined as
follows. The vector x(θ) is defined as the vector from the center of mass to
the point on the shape where the surface normal is equal to n(θ).

The contact support function (r(θ), d(θ), e(θ)) is defined as

r(θ) = x(θ) · n(θ), d(θ) = x(θ) · t1(θ), e(θ) = x(θ) · t2(θ)

The function r(θ) is called the radius function. The radius function com-
pletely describes the surface. The other two components of the contact sup-
port function appear in the derivatives of the radius function:

∂r

∂θ1
=

∂x

∂θ1
· n + x · ∂n

∂θ1
= 0 + (x · t1) cos θ2 = d cos θ2, (4)

∂r

∂θ2
=

∂x

∂θ2
· n + x · ∂n

∂θ2
= 0 + (x · t2) = e. (5)

By definition, the partial derivatives of x lie in the tangent plane, so the dot
product of the partials with the normal is equal to 0. Let θi = (θi1, θi2)T

denote the surface parameters for contact point i. Below we will drop the
argument θi and replace it with a subscript i where it does not lead to
confusion. For instance, we will write ni for n(θi), the surface normal at
contact point i in body coordinates.

The palms are modeled as three planes. The point of intersection of these
planes is the origin of the world frame. Let us assume we can rotate each
plane around the line of intersection with the horizontal plane through the
origin. For each palm we can define a right-handed frame as follows. Let n̄i

be the normal to palm i (in world coordinates) pointing toward the object, let
t̄i2 be the tangent normal to the axis of rotation and pointing in the positive
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Z direction and let t̄i1 be t̄i2 × n̄i. Then Ri = [̄ti1 ,̄ti2,n̄i] is a right-handed
frame for palm i. The configuration of the palms is completely described by
the three rotation matrices R1, R2, and R3. Let si denote the coordinates
in palm frame i of contact point ci, so that Risi = ci. Note that the third
component of si is always zero; by definition the distance of the contact point
along the normal is zero. See Fig. 4 for an illustration.

The position and orientation of the unknown object are described by
cm and R0, respectively. The center of mass is located at cm. The object
coordinate frame defined by R0 is chosen such that it coincides with the
principal axes of inertia. The inertia matrix I can then be written as

I = m

%2
x 0 0
0 %2

y 0
0 0 %2

z

 ,

where m is the mass of the object, and the %’s correspond to the radii of
gyration. We will write βi for the curve traced out on the surface of the
object by contact point i. So βi(t) = x

(
θi(t)

)
.

5 Local Shape

The derivation of the shape and motion proceeds as follows. In this section we
derive expressions for the contact point velocities in body coordinates. These
expressions depend on the sensor values, the motions of the palms, and the
motion of the object. In the next section we will solve for the motion of the
object by analyzing the dynamics. We integrate the contact point velocities
to obtain curves that describe the local shape of the object. We can recover
the contact point velocities by considering the distances between the contact
points and the rates at which they change. We derive additional constraints
on the contact point velocities and curvature by considering the acceleration
constraints induced by the position constraints.

We can write the constraint that the object maintains contact with each
palm as

ci = cm + R0βi, i = 1, 2, 3. (6)
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The velocity of contact point i is therefore

ċi = ċm + ω0 ×R0βi + R0β̇i. (7)

The difference between two contact point velocities is

ċi − ċj = ω0 ×R0(βi − βj) + R0(β̇i − β̇j) (8)

= ω0 × (ci − cj) + R0(β̇i − β̇j). (9)

Since we assume the object is smooth, we have that ni · β̇i = 0. Furthermore,
the palm normals and object are related by the object orientation matrix:

n̄i = −R0ni, (10)

since n̄i is in world coordinates and ni is in object coordinates. We can
combine these constraints to solve for β̇i:

n̄i ·R0β̇i = 0 (11)

n̄j ·R0β̇i = n̄j ·
(
ċi − ċj − ω0 × (ci − cj)

)
(12)

n̄k ·R0β̇i = n̄k ·
(
ċi − ċk − ω0 × (ci − ck)

)
, (13)

such that i, j, and k are distinct. Let Q be the defined as the 3 × 3 matrix
with entries qji:

qji = n̄j ·
(
ċi − ċj − ω0 × (ci − cj)

)
. (14)

Then we can write the solution for β̇1, β̇2, and β̇3 more compactly as(
β̇1 β̇2 β̇3

)
= B−1Q, (15)

where B =
(
n̄1 n̄2 n̄3

)T
R0. As long as the palms are in general position, B

will be invertible. Equation (15) describes the curves traced out by the contact
points on the surface of the object (in body coordinates) as a function of the
motion of the palms, the sensor values and the motion of the object. Note that
these curves are not independent of each other. We know the configurations
of the palms and the sensor values. If we also know one of the curves and
the motion of the object, we can reconstruct the other curves. Below we will
show that we can reconstruct all three curves by solving for the values of
the radius function along the curves. Using (4) and (5), the derivative with
respect to time of the radius function at contact point i is

ṙi =
∂r

∂θi1
θ̇i1 +

∂r

∂θi2
θ̇i2 =

(
di cos θi2

ei

)
· θ̇i. (16)

We will rewrite the right-hand side of this equation as a function of the
motion of the palms and the object, and the values of the radius function at
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the contact points. Using the position constraints we can rewrite di and ei

as a function of the configuration of the palms and ri. We can write βi as

βi = rini + diti1 + eti2. (17)

The vector between contact point i and contact point j is then

ci − cj = R0(βi − βj)
= R0(rini + diti1 + eti2 − rjnj + djtj1 + etj2).

By rearranging terms we can obtain the following solution for the d’s and
e’s:

d1

e1

d2

e2

d3

e3

=


t11 t12 −t21 −t22

0
0
0

0
0
0

t11 t12

0
0
0

0
0
0

−t31 −t32



−1

(
RT

0 (c1 − c2)− (r1n1 − r2n2)

RT
0 (c1 − c3)− (r1n1 − r3n3)

)
.

(18)

‘Hidden’ in the tangent vectors are the θi’s. Using (3) we can write θi as a
function of the palm surface normal ni:

θi =
(

arctan(ni2, ni1)
arcsin ni3

)
. (19)

The relationship between the normal ni and the orientations of the palms and
object is given by (10). The expression for ṙi also contains θ̇i. By considering
the derivative of the normal ni we can obtain simple expressions for θ̇i. On
the one hand we have that

ṅi =
∂n

∂θi1
θ̇i1 +

∂n

∂θi2
θ̇i2 = θ̇i1 cos θ2ti1 + θ̇i2ti2. (20)

But we can also obtain ṅi by differentiating (10):

ωi× n̄i = ˙̄ni = −ω0×R0ni−R0ṅi ⇒ ṅi = RT
0

(
(ω0−ωi)× n̄i

)
. (21)

Here ωi is the rotational velocity of palm i. Combining these two expressions
for ṅi we can write θ̇i as

θ̇i =
(
ti1/ cos θi2 ti2

)T
RT

0

(
(ω0 − ωi)× n̄i

)
. (22)

Let us now consider the constraints on the acceleration of the object
induced by the three point contact assumption. This will provide us with an
additional constraint on βi and will give us some more insight into how the
3D case is fundamentally different from the planar case. By differentiating (7)
we obtain the following constraint on the acceleration:

c̈i = a0 + α0 ×R0βi + ω0 × (ω0 ×R0βi + 2R0β̇i) + R0β̈i, (23)
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where a0 and α0 are the acceleration and angular acceleration of the object.
(We will solve for a0 and α0 in the next section by analyzing the dynamics.)
Observe that from differentiation of the smoothness constraint β̇i · ni = 0
it follows that β̈i · ni = −β̇i · ṅi. We can therefore rewrite the acceleration
constraint in the normal direction as a constraint on β̇i. First, we rewrite the
terms containing β̇i and β̈i:

n̄i · (ω0 × 2R0β̇i) + n̄i ·R0β̈i

= 2(n̄i × ω0) ·R0β̇i + R0(ṅi · β̇i)

= 2(n̄i × ω0) ·R0β̇i + ((ω0 − ωi)× n̄i) ·R0β̇i

= (n̄i × (ω0 + ωi)) ·R0β̇i.

The constraint on β̇i is therefore

(n̄i × (ω0 + ωi)) ·R0β̇i =

n̄i ·
(
c̈i − a0 − α0 × R0βi − ω0 × (ω0 × R0βi)

)
. (24)

Let us now consider what how the acceleration constraint describes certain
time-independent shape properties of the contact curves. The Darboux frame
field [24] can be used to describe curves on a surface. For the curve βi the
Darboux frame field is defined by the unit tangent T of βi, the surface normal
U restricted to βi, and V = U × T . The normal U coincides with ni. Note
that the normal of the curve does not necessarily coincide with the normal
of the surface. Similar to the Frenet frame field, the derivatives of T , V , and
U can be expressed in terms of T , V , and U :

Ṫ = v( κgV + κnU) (25)

V̇ = v(−κgT + τgU ) (26)

U̇ = v(−κnT−τgV ) (27)

Here v = ‖β̇i‖ is the velocity of the curve, κg the geodesic curvature, κn the
normal curvature, and τg the geodesic torsion. The geodesic curvature at a
point describes the ‘bending’ of the curve in the tangent plane of the surface
at that point. The normal curvature at a point describes the ‘bending’ of the
curve in the surface normal direction. Using this frame field we can write β̈i

as

β̈i = v̇T + vṪ = v̇T + v2(κgV + κnU). (28)

So by taking the dot product with the normal on both sides of the acceleration
constraint we can obtain a constraint on the normal curvature of the curve. In
the planar case the velocity of the curve is equal to the radius of curvature,
and the acceleration constraint determines the (normal) curvature at the
contact points. In the 3D case, the acceleration constraint puts a constraint
on the normal curvature at the contact points. But now we have two extra
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curve shape parameters, κg and τg, which are equal to zero in the planar
case. In other words, in 3D the contact point curves are less constrained than
in 2D.

6 Dynamics

The solution for the shape of the object depends on the motion of the object.
We can solve for the motion by writing out the dynamics equations for the
system formed by the palms and the object. If the object remains in contact
with the palms, the object has only three degrees of freedom. It is thus suffi-
cient to solve for the angular acceleration. We obtain the rotational velocity
by integration. Let Ii be the moment of inertia of palm i around its axis of
rotation, αi the angular acceleration around that axis, τi the torque produced
by palm i’s motor at the axis of rotation, and fi the magnitude of the contact
force. Then the motion of palm i is described by

Iiαi = τi − fisi2, (29)

where si2 is the second component of si. From the definition of the palm
frame it follows that si2 measures the distance to the axis of rotation (see
also Fig. 4). The net force and net torque on the object are given by Newton’s
and Euler’s equations:

F 0 = ma0 = F g +
∑3

i=1 fin̄i (30)

τ 0 = I ′α0 + ω0 × I ′ω0 =
∑3

i=1 τ ci (31)

where

I ′ = R0IRT
0 (32)

τ ci
= (R0βi)× (fin̄i) = −fiR0(βi × ni). (33)

From these equations we can solve for the angular acceleration of the object,
α0:

α0 = −I ′−1
(
ω0 × I ′ω0 +

∑3
i=1

τi−Iiαi

si2
R0(βi × ni)

)
. (34)

Let us assume we can control the palms to move at a constant rotational
velocity. The angular acceleration terms αi will then disappear. We can sum-
marize the simultaneous solution for the shape and motion of an unknown
smooth convex object manipulated by three flat palms with the following
system of differential equations

ṙi = (di cos θi2, ei)T · θ̇i, i = 1, 2, 3 (35)

Ṙ0 = ω̂0R0 (36)

ω̇0 = −I ′−1
(
ω0 × I ′ω0 +

∑3
i=1

τi

si2
R0(βi × ni)

)
. (37)
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Here ω̂0 is the matrix form of the cross product, i.e., the 3 × 3 matrix such
that ω̂0p = ω0×p for any vector p. Equation (35) describes the shape of the
object at the contact points. Equations (36) and (37) describe the dynamics
of the object. We can replace the variables di, ei, θi2, θ̇i, and βi with the
solutions given in (18), (19), (22) so that the system of differential equations
only depends on the values of the radius function at the contact points, palm
configurations and sensor values. This allows us to integrate the system of
differential equations given the palm configurations and sensor values.

7 Simulation Results

We have written a program to simulate the motion of an arbitrary smooth
convex object supported by three planes. To reconstruct the shape we need
to integrate out the system of differential equations given by (35)–(37). There
are several reasons why straightforward integration is not likely to produce
good results. We can improve the results in the following two ways. First,
we should use quaternions [7] for orientations to improve numerical stabil-
ity and avoid singularities of three-parameter representations of orientations.
Second, we should try to enforce all the constraints on the contact point
curves given by (15) and (24). We use a prediction-correction numerical inte-
gration method. We use the difference between prediction and correction as
an error measure when searching for the initial conditions of the system of
differential equations.

Fig. 5. An object rolling and sliding on immobile palms with gravity and contact
forces acting on it. The object is given some initial rotational velocity. It is shown
at t = 0, 0.6, . . . , 4.2.

Figure 5 shows the motion of an ellipsoid supported by three palms. The
palms are at 60 degree angles with the horizontal plane. The rotational axes
are at 60 degree angles with each other. The radii of the axes of the ellipsoid
are 2.5, 2, and 1. One problem with simulating this system without friction is
that if the palms are moving they continuously increase the kinetic energy of
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Fig. 6. Differences between real and observed shape and motion. Real values are
plotted as solid lines, observed values as dashed lines. (a) The radius function values
at the contact points. (b) The four quaternion components of the rotational velocity

Fig. 7. The convex hull of the
contact curves gives a lower
bound on the volume occupied
by the object. The true shape
of the object is shown as a
wire-frame model.

the object. In our simulations the ellipsoid breaks contact before a significant
part of the object is recovered. To get around this problem, we keep the palms
in the same position and give the ellipsoid some initial velocity. In Fig. 5 the
object has an initial rotational velocity of (0, 0.3, 0.3)T . In the search for
initial conditions we assume the initial rotational velocity is known. This is,
of course, not very realistic. If we would model friction, then moving the
palms would become feasible and we could start the system with the object
at rest. In that case the rotational velocity would be zero. The reconstructed
shape and motion are shown in Fig. 6.

8 Shape Approximations

Given the recovered motion and contact curves we can also give a lower and
an upper bound on the volume occupied by the entire shape. Since we assume
the object is convex, the convex hull of the contact curves in the object frame
is a lower bound on the shape. Figure 7 shows the lower bound on the shape
obtained from the example in the previous section. We can obtain an upper
bound by observing that at each contact point the corresponding palm plane
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introduces a half-space constraint: the object has to lie entirely on one side
of the plane. Clearly, the intersection of half-spaces along the contact curves
in the object frame forms an upper bound on the shape. Note that we can
obtain slightly tighter upper and lower bounds if we are given bounds on the
curvature of the object.

These bounds could form the basis for a manipulation strategy. Having
bounds makes it possible to speculate about the outcomes of actions. Sup-
pose we would like to get an estimate of the entire shape. One objective for
a planner could be to minimize the difference between the upper bound and
lower bound. A simple ‘greedy’ planner would always try to move the con-
tact points toward the largest distance between upper and lower bound. A
smarter planner would also take into account the path length, such that the
palms would minimize nearby differences between the bounds before trying to
minimize faraway differences. This assumes we have some reasonable metric
to measure distance between palm/object configurations.

9 Arbitrary Palm Shapes

In this paper we have written the shape and motion of an unknown object as
a function of the contact point positions ci and the contact point velocities ċi,
all in world coordinates. We wrote out these positions and velocities in terms
of poses of the palms and the sensor values. Effectively, we have used world
coordinates to decouple the solution for the shape and motion of the unknown
object from the shape and motion of the palm. This procedure allows us to
use differently shaped palms without changing the solution for the shape and
motion of the unknown object. Suppose we were to use spherical palms. For
example, Fig. 8 shows two spherical palms holding an object. The contact
point on palm i can be written as

ci = biRi

cos si1 cos si2

sin si1 cos si2

sin si2

 , (38)

where bi is the radius of sphere/palm i, and (si1, si2) are the spherical sensor
coordinates. We can obtain expressions for ċi by differentiating the right-
hand side of equation 38 with respect to Ri and si. The solution for the
dynamics of the object would change slightly with spherical palms, but the
solution for the shape and motion of the object would remain structurally

Fig. 8. Two spherical palms holding an object.
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the same. Equations 14 and 15 show clearly how the solution for the shape
of the object depends on the motion of the contact points.

Changing the palm shapes raises many new questions. Intuitively, it seems
that spherical palms would be ‘better’ than flat palms, but can we quantify
this? We can use the shape of the palms to get tighter upper bounds on the
shape of the unknown object. Instead of taking intersections of half-spaces,
we can now use intersections of spheres as an upper bound. It also seems that
with spherical palms we would have to move the palms less to reach a point
on the surface.

If we allow some of the palms to be convex, we could actually recover con-
cavities on the object provided the radius of curvature along the concavities
is larger than the radius of the palm. Allowing the object to have concavities
would invalidate our bounds from the previous section. We can define a new
upper bound as the intersection of half-spaces at those points on the contact
curves that are also on the boundary of the convex hull of the curves. We
can also define other approximate representations of the shape of the object
that may be closer to the true shape, such as spline interpolations, α-shapes
[8] or principal surfaces [12, 14].

10 Discussion

We have described a method for reconstructing the shape and motion of
unknown smooth convex objects with tactile sensors. We required no immo-
bilization of the object or even control of its exact motion. Instead, we used
nonprehensile manipulation with planar palms covered with tactile elements
to simultaneously manipulate and sense an object. The motion and shape
of the object can be written as a function of the motion of the palms and
the sensor values. This work will have applications in grasping (partially)
unknown objects and tactile exploration of unknown environments.

In this paper we assumed there was no friction and that the unknown
object being manipulated by the palms was smooth and convex. In future
work we are planning to remove these assumptions. In the presence of friction
the normal forces will no longer be along the normal, but at an angle with
the normal. If the contact point is moving this angle is proportional to the
coefficient of friction. If we know the coefficient of friction, we can again solve
for the motion of the object. If a contact point is not moving (i.e., the contact
force is inside the friction cone), but one of the other contact points is, we
may be able to write the shape and motion of that contact point relative to
the fixed contact point. Non-smoothness of the object results in some cases
in additional constraints or at least non-smoothness in the sensor values, that
can be used to detect corners and edges.

Removing the assumptions makes the system more complex, but the basic
formulation remains the same. One question that arises if we allow various
contact modes is whether we can detect which contact mode the system is
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in. We can run observers for each contact mode in parallel and have a higher
level algorithm decide which observer is (most likely) to have the smallest
error in the state.

The contact kinematics lead naturally to a description of the shape of an
object in terms of the curvature at the contact points. One disadvantage of
this approach is that the shape has an infinite number of degrees of freedom.
Although this allows us to reconstruct any smooth convex shape, in many
cases it may be sufficient to have a ‘reasonable’ approximation. With future
work we would like to find finite dimensional models for shape that admit a
wide range of shapes and can be constructed efficiently in an incremental way.
We may be able to apply some of the techniques developed for reconstructing
the shape of immobilized objects.

Finally, we would like to construct a state-estimation method for the 3D
case with observer-like properties. Since we currently do not have a state-
space description of the system, constructing an observer is not possible.
However, we derived more constraints on the shape and motion of the un-
known than there are unknowns. These extra constraints can be used to
adjust our state estimate. Borrowing ideas from reduced-order observers, we
may be able construct something similar for our system. Alternatively, we
can use the three additional constraints to estimate the moments of inertia,
which we had previously assumed to be known.
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