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Abstract— We present a distributed controller for the center
of mass of a modular robot. This is useful for locomotion of a
modular robot over uneven and unknown terrain. By controlling
the center of mass, a robot can prevent itself from falling over. We
present a distributed and decentralized algorithm that computes
the mass properties of the robot. Additionally, each module also
computes the mass properties of the modules that are directly
or indirectly connected to each of its connectors. With this
information, each module can independently steer the center of
mass towards a desired position by adjusting its joint positions.
We present simulation results that show the feasibility of the
approach.

I. INTRODUCTION

In recent years the area of modular and self-reconfigurable

robots has seen much research activity. Much of this work

focuses on specific designs, reconfiguration planning, or gait

development. There has hardly been any work on locomotion

of modular robots in the presence of uncertainty. In a real

world environment the surface is often not level and a gait

developed on a flat surface may not be as effective or, worse,

make the robot fall over. We aim to develop a new approach

to locomotion. The key idea is that the robot uses a gait only

as a guideline for locomotion, and uses contact information

together with mass information to ensure a stable pose at all

times. This paper is a first step in this direction. We present

a distributed and decentralized algorithm for computing the

mass properties in a modular robot. Specifically, the modules

compute the total mass, the center of mass (COM), and the

inertia tensor. Each module also computes the mass properties

of the modules that are directly or indirectly connected to

each of its connectors. This information enables a module to

compute joint displacements that will move the COM towards

a desired position. By extending the results in this paper, we

expect that a gait can be specified in terms of where the COM

needs to go and which leg needs to be moved, rather than

specifying joint angles for every module. This does not only

greatly simplify the specification of a gait, but will also allow

a modular robot to move over uneven terrain.

The work on modular robots can be divided into hyperre-

dundant kinematic chains and self-reconfigurable robots. With

hyperredundant kinematic chains [1–4] the focus is on solving

the inverse kinematics or tracking a reference shape with a

robot. Solutions to these problems are computed in a centralized

way. Our work is more applicable to self-reconfigurable robots,

where solutions often need to be computed in a distributed

way. Many different types of self-reconfigurable robots have

been proposed. A number of recent survey articles [5–8] and

one special journal issue [9] provide a good overview of the

field. The different types of self-reconfigurable robots can

be divided into two categories: lattice-based and chain-based.

As the name suggests, in lattice-based systems, the nodes

are assumed to be positioned in a grid structure. Module

movement is assumed to be discrete, going from one state

to an allowable neighboring state. Reconfiguration planning is

then ‘simply’ a discrete search. Some examples of such systems

are Molecule modules [10], Crystalline modules [11], bipartite

modules [12], ATRON [13] and stochastic cellular robots [14].

In chain-based systems, the modules are typically connected

to form tree-like structures or loops. The modules typically

have continuous degrees of freedom. Examples of this class

of systems include PolyBot [15], and CONRO [16, 17]. Some

new hardware modules such as MTRAN [18, 19] and our own

SuperBot modules [20] have combined the features from both

types. Other hardware such as Tetrobot [21] is built for flexible

structures but cannot change connections autonomously.
To the best of our knowledge mass properties of a modular

robot have so far not been considered in the literature. In

computer graphics the center of mass information has been

used to compute realistic poses for articulated figures [22]. This

is, however, a centralized approach that is difficult to apply to

a distributed system. Despite the apparent lack of work in this

area, the advantages of a module knowing the mass properties

of the surrounding modules are clear. In addition to facilitate

finding stable poses, it can be used to measure the speed of

a whole ensemble of modules. This assumes that at any time

there exists at least one module that can measure its own speed

in the global reference frame. A module in contact with the

ground can potentially be used for this purpose. A module

can now also anticipate the applied torque to its neighboring

modules as its joints move to a given target position.
The rest of this paper is organized as follows. The next

section gives an overview of the modular robot on which we

have implemented our control methods. However, our approach

is not specific to this type of robot, and can be applied to other

chain-type modular robots as well. In section III we present a

distributed algorithm for computing the mass properties of an

ensemble of modules. In section IV this algorithm is then used

to actively control the COM. This is done locally; each module

independently tries to move the COM to a desired position.

Section V describes some of our simulation results. Finally, in
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Fig. 1. Diagram of one module.

section VI we summarize the contributions of this paper and

outline directions for future research.

II. BACKGROUND

This section will give a brief overview of the system called

SuperBot on which we plan to run our experiments. For a more

detailed description see [20]. Each module has three revolute

joints as shown in figure 1. Each module also has 6 genderless

connectors. Any connector of a module can be connected to any

connector of another module in 4 different ways (rotations of 0,

90, 180, and 270 degrees about the connector face normal). By

choosing the appropriate rotation for the roll joint (the middle

joint in figure 1), a SuperBot module can emulate a Conro

module [17] or an MTRAN module [18, 19].

Each module contains two Atmega 128 CPUs, one in each

half of the module. The software on the modules is built on top

of AvrX, a small real-time kernel for embedded processors [23].

Some of the modules have additional capabilities. Some

modules have wireless networking capabilities to enable easy

remote control and the bootstrapping of new software. Other

modules that are planned are modules with small thrusters to

enable flight in micro-gravity environments, and modules with

a video camera for simple target tracking.

III. COMPUTING THE MASS PROPERTIES

In this section we will present a method that will allow each

module in a self-reconfigurable system to establish the mass

properties of the whole system. Each module computes an

estimate of the mass properties based on its own state and on

information it receives from its immediate neighbors. Whenever

its estimate changes, it sends a message with the new estimate

to its neighbors. If the modules do not move, the modules will

eventually all converge to the true mass properties and stop

sending updates to each other. Below, we will assume that the

modules are connected to form a tree-like structure, i.e., there

are no loops.

The mass properties are computed with respect to a frame

local to each module. Whenever a module sends mass properties

to another module, it first transforms them to be relative to a

coordinate frame attached to the connector. We assume that

the receiving module knows the relative rotation between its

connector and the sender’s connector. Based on this information

and the received mass properties, the receiving module can

transform the mass properties to be relative to its local frame.

The algorithm for computing and updating the mass proper-

ties is completely distributed and decentralized. The high-level

Algorithm 1 UpdateMass

1: while true do
2: clear update flags for all connectors

3: while ¬inbox.empty() do � process all incoming

4: msg = inbox.pop() � messages

5: connectorMass[msg.destination] = msg.mass

6: mark other connectors for update

7: end while
8:

9: RecomputeMass()

10:

11: for i = 1 . . . n do � update neighbors

12: if connectorMass[i] is marked for update then
13: send connector i (mass − connectorMass[i])

14: end if
15: end for
16: end while

Algorithm 2 RecomputeMass()

1: recompute moduleMass � the mass properties of just this

� module

2: if moduleMass has changed then
3: mark all connectors for update

4: end if
5: mass = moduleMass

6: for i = 1 . . . n do
7: mass = mass + connectorMass[i]

8: end for

pseudo-code for the main event loop is shown in algorithms 1

and 2. We write the mass properties as a 3-tuple (m, p, I ),
denoting the mass m, the position of the COM p, and the

inertia tensor I . Suppose we know the mass properties c1 =
(m1, p1, I1) and c2 = (m2, p2, I2) of two sets of modules.

The combined mass properties c0 of both sets are then simply

c0 = c1 + c2 = (
m1 + m2,

m1 p1+m2 p2
m1+m2

, m1 I1+m2 I2
m1+m2

)
.

Each module maintains an estimate of the mass properties

of the modules attached to each of its n connectors. It also

maintains the mass properties of itself and of the whole system.

At each step of algorithm 1 a module processes updates

from its neighbors, updates its estimate of the global mass

properties, and notifies the appropriate neighbors. Note that

the information sent to each neighbor i are not the global mass

properties, but the mass properties of all modules attached to

that neighbor. Basically, each module receives an estimate of

the mass properties from a given connector of just the modules

that are connected (directly or indirectly) to that connector.

These mass properties can be obtained by subtracting the

mass properties of all modules connected to connector i from

the global estimate. Subtraction of mass properties is defined

analogously to addition.

Let d be the largest tree distance between two modules.

Then after d iterations of the main loop of algorithm 1, each

module will have computed the correct COM, assuming the
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Fig. 2. Moving the center of mass towards a stable configuration reduces to
finding the distance between a circle and a line in 3D.

modules do not move. The modules communicate updates only

when necessary, so if the modules do not move, the modules

will stop sending messages after d iterations.

We can choose to assign a world coordinate frame to a

module in contact with the ground. (Electing a unique module

if several modules are in contact with the ground is not

completely trivial, but can be done through, e.g., a randomized

leader election protocol.) This ‘leader’ module can periodically

propagate its position to the other modules. As with the mass

properties, this position is transformed to modules’ local frames.

With this information each module can then also compute the

mass properties in world coordinates.

IV. STABILIZING BEHAVIOR

As already mentioned in the introduction, one of the uses of

the COM is to prevent a self-reconfigurable system from falling

over. To stabilize an arrangement of modules we can change

the joint angles in the modules, rearrange the modules, or a

combination of both. Module rearrangements tend to be slower

than changes in joint angles. The effect of rearrangements on

the COM is specific to the module architecture. This section

will therefore focus only on joint angle changes.

A configuration of modules is stable if the contact forces can

balance the gravitational force. Let us consider the simplest

case first: there is only one point of contact and there is no

friction. A configuration is then stable if its center of mass

lies on the support line: the vertical line through the point

of contact. If a configuration is not stable, then each module

can move the configuration closer to stability by adjusting its

joint angles. For prismatic joints this is straightforward: for

each such joint the COM is translated along a line to a point

that is closest to the support line (or as close to that as joint

limits allow). Let us now consider a revolute joint. One side

of the joint is connected to the contact point and will remain

in the same position as the joint angle changes. The other

side of the joint and all modules attached to it move along an

arc of a circle. Let p1 be the COM of the part of the system

that remains fixed, and let p2 be the COM of the part of the

system that is going to be rotated. The position of p2 after the

joint has been rotated by θ radians about its rotation axis u
is denoted by p′

2. We can write the new COM p′
0 of the total

mass as

p′
0 = m1 p1 + m2 p′

2

m1 + m2
= m1 p1 + m2(q + Rθw)

m1 + m2
,

where q is the position of the joint, w = p2 − q, and Rθ is

a 3-by-3 rotation matrix representing a rotation of θ radians

about u. The COM moves along a circle as θ changes. So to

move the COM as close as possible to a stable configuration,

we need to find the minimum distance between a circle and

the support line in 3D. See figure 2. In this figure the support

line passes through the origin and is parallel to the z-axis. To

minimize this distance, the derivative of the distance written

as a function of θ is set to 0 and converted to a fourth degree

polynomial. The resulting equation has no stable analytical

solution and has to be solved numerically. A fast and accurate

numerical method for computing the distance between a circle

and a line in 3D is given in [24]. There are a couple of special

cases we need to distinguish. First, if the COM p2 lies on the

axis of rotation, then no rotation will bring the COM closer

to the support line. In this case the joint maintains its current

position. The second special case occurs when the axis of

rotation and the support line coincide. In this case the joint

cannot bring the COM closer to the support line either and

it will maintain its current position. Finally, if the center of

rotation lies on the support line and the axis of rotation does not
coincide with the support line, then there exist two solutions.

In the current implementation we pick the solution with the

smallest z-coordinate. Lowering the height of the COM tends

to improve stability, but it can also restrict maneuverability of

the modules.

Up to now we have only considered one joint at a time.

Ideally, all joints move simultaneously towards a stable

configuration. Finding optimal displacements for all joints

simultaneously is very difficult, especially if we want to find a

solution in a distributed fashion. We would have to solve the

inverse kinematics or use a path planner to find a path between

the current configuration and a stable configuration. Efficiently

solving these problems in parallel and efficiently is not practical

on simple embedded processors such as those we plan to use

on our modules. Instead, we use an approximate solution which

tends to converge to a desired configuration very quickly. Each

joint computes its own optimal displacement independently of

each other. This displacement is passed on to the joint’s PID

controller. The optimal displacement is recomputed frequently.

This computation is interleaved with the computation of the

COM (which continuously changes as the joints move towards

their target positions). In effect, the modules make small steps

towards a stable configuration. Both the absolute and relative

position of the COM keeps changing, so the direction of these

steps is recomputed at every step.

The approach described above computes instantaneously

a desired direction to move in for all modules, but ignores

momentum that builds up in the whole ensemble of modules.

The PID gains need to be adjusted so that the modules do not

oscillate around the support line. In the future we plan to study

and develop controller that take full advantage of the kinematic
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Fig. 3. Four random trees.

information that the nodes can share, but in this initial study we

just compare some simple heuristics that qualitatively achieve

the desired behavior with the default behavior (i.e., when the

controllers on each module are using identical gains). We will

describe below two heuristics. One is based on the distance

between the estimated COM and the support line, the other is

based on momentum.

Since the goal of the stabilizing behavior is to get the COM

as close as possible to the support line, it makes sense to

reduce the gains as the COM gets closer, so that the robot

does not overshoot the goal position. After the first few steps

of Algorithm 1, the modules will have a reasonably accurate

estimate of the COM. The distance of the COM to the support

line is easy to compute, and is almost the same on every

module. The proportional gain is adjusted as follows:

K P = (c0 + c1dsupport)K P0,

where c0 and c1 are constants, dsupport is the distance to the

support line, and K P0 is the nominal proportional gain. The

integral and derivative gain are adjusted analogously. The

constants c0 and c1 are determined through simulations (see

next section).

The momentum based heuristic is based on the notion that an

ensemble of modules should not gain too much momentum, as

it will be difficult to stop the modules once the goal is reached.

For each joint we consider the mass and distance to the joint

of the COM of the modules that will be moved by this joint.

The gains are scaled by the magnitude of v = m2u × ( p2 − q).

So the proportional gain is adjusted as follows:

K P = (c0 + c1‖v‖)K P0.

As with the distance heuristic, the integral and derivative gain

are adjusted analogously.

The approach described above can be generalized to multiple

contacts with friction as follows. With friction the COM needs

to be inside a stability region (instead of on a support line). This

region is determined by the contact forces, which have to lie

inside the friction cones at the contacts. In recent work [25, 26]

centralized algorithms are presented to quickly compute such

regions. Modules need to pass on contact information, so that

each module can compute the stability region. With multiple

contacts we aim to make the modules move the COM within

this region. Part of a gait specification can then consist of

moving the COM to a sequence of different control points,

(or line segments, facets, etc.). One problem with multiple

contacts is that the robot effectively forms a closed chain with

the ground. The modules need to coordinate their actions more

closely, and some compliance will be necessary. This is a very

challenging problem that we plan to explore in future research.

V. SIMULATION RESULTS

The balancing behavior was tested in our simulation environ-

ment. This environment is built on top of the Open Dynamics

Engine (ODE) [27]. The specifications of the simulated modules

are based on the real hardware modules that are currently being

built. The kinematics of the modules has already been described

in section II. The only difference is that the simulated modules

have only 10% of the actual mass. This is done to simulate

the behavior with a large number of modules. In this case the

motors would in practice not be able to lift long chains. Future

versions of the module are planned to be lighter. By combining

this with improved balancing behavior, we plan to bridge the

gap between simulation and reality.

To test the balancing behavior we generated random trees

of modules. The results in this section are based on random

trees consisting of 20 modules divided into 4 branches of 5

modules. Since each module has three degrees of freedom, the

whole tree has 60 degrees of freedom. The root is always in

a vertical orientation, and has been fixed to the ground. The

tests were performed on the four trees shown in figure 3. To

evaluate the performance, we computed the distance between

the center of mass and the support line as a function of time.

We would like this distance to converge to 0 as quickly as

possible. We did this for the three different control schemes

discussed in the previous section: the default scheme where

the gains on all modules are identical and constant, the scheme

where the gains depend on the estimated distance to the support

line, and the scheme that uses the momentum heuristic. For

each scheme, the controller computes the desired torque 1,000

times per second. The results of our simulations are shown in

figure 4. The graphs match the corresponding tree in figure 3.

The nominal proportional, integral and derivative gains are

set to 10, 0.1, and 1e-4, respectively. For the distance heuristic,

the constants c0 and c1 are set to 0 and 0.1, whereas for the

momentum heuristic these constants are set to 0 and 1. The

gains and constants were chosen ‘by hand’ to get a reasonable

performance on a series of tests, but were not heavily optimized

for the examples shown here. From the graphs we can conclude

that no control method consistently outperforms the others. The
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Fig. 4. Stabilizing behavior with three different control laws. The distance is measured in multiples of the width of a module (see figure 3).

momentum heuristic seems to give the best overall behavior in

the sense that it always converges quickly and tends to have a

small steady-state error. The other two methods will sometimes

converge to a smaller distance faster, as is shown in figure 4(b).

In general, though, all methods exhibit the desired behavior

most of the time. Clearly, more work is still needed to improve

the performance in terms of reliability and convergence rate.

VI. DISCUSSION

In this paper we have shown the feasibility of using

distributed control to move the COM of a modular robot to

a desired position. The control programs on the modules are

distributed and decentralized. By exchanging information with

the modules it is connected to, each module can accurately track

the mass properties of the whole ensemble as the modules are

moving around. Moreover, each module can move the COM to

its desired position independently of what the other modules are

doing. The control method presented in this paper is a simple,

greedy, local method. In our simulations the basic method

of controlling the COM, in combination with a heuristic to

improve stability, has been shown to successfully move the

COM to a desired position.

There are many different directions in which we plan to

expand this work. First, the performance can be improved if

each module computes the optimal joint angles for all three

joints simultaneously (rather than one-by-one). With three

degrees of freedom we can move the COM along a straight line

to the desired position (but without controlling the orientation

of the associated mass). If we can automatically form pairs
of modules in an ensemble of modules, then each pair has

six degrees of freedom and can control both position and

orientation of the COM. Of course, in practice joint limits

and (self-)collisions may make impossible movement in some

directions.

The second direction for future research is to use the inertia

tensor in the balancing behavior (in addition to the mass and the

COM). Using the (approximate) inertia tensor, each module can



predict more accurately the system response to a torque applied

at one its joints. It may also be useful to compute simple

shape descriptors of the whole ensemble of modules. The

shape information does not necessarily lead to better balancing

behavior, but can be used to modify the posture of a modular

robot.

When a modular robot is arranged in a multi-legged forma-

tion, the robot effectively forms closed kinematic chains with

the ground. This means that modules will have to collaborate

more closely to avoid jamming the joints. The joints can be

partitioned in active and compliant joints, but care should be

taken that the robot does not fall over.

Finally, we plan to take external forces such as gravity and

friction at the contact points into consideration. By trying to

compensate for those forces, we aim to maintain more or less

the same posture while at the same time move the COM to its

desired position.
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