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Path Planning for Deformable Linear Objects
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Abstract—We present a new approach to path planning for de-
formable linear (one-dimensional) objects such as flexible wires.
We introduce a method for efficiently computing stable configura-
tions of a wire subject to manipulation constraints. These config-
urations correspond to minimal-energy curves. By restricting the
planner to minimal-energy curves, the execution of a path becomes
easier. Our curve representation is adaptive in the sense that the
number of parameters automatically varies with the complexity of
the underlying curve. We introduce a planner that computes paths
from one minimal-energy curve to another such that all interme-
diate curves are also minimal-energy curves. This planner can be
used as a powerful local planner in a sampling-based roadmap
method. This makes it possible to compute a roadmap of the en-
tire “shape space,” which is not possible with previous approaches.
Using a simplified model for obstacles, we can find minimal-energy
curves of fixed length that pass through specified tangents at given
control points. Our work has applications in cable routing, and mo-
tion planning for surgical suturing and snake-like robots.

Index Terms—Deformation, differential geometry, flexible ma-
nipulation, flexible object representation, minimal-energy curves,
modeling, motion planning, path planning.

I. INTRODUCTION

THERE are many examples of manipulation tasks where
flexibility is important: routing cables in buildings or cars,

robot-assisted surgery, virtual reality applications, and manip-
ulating paper or sheet metal. To successfully perform manip-
ulating tasks in these contexts, we need a model of deforma-
tion/flexibility. Once we have a model, we need a computation-
ally efficient way to simulate this model or solve motion plan-
ning queries. As always, there is a tradeoff between modeling
accuracy and the efficiency of a simulator or planner, and for
flexible objects, this is an especially important problem. There
is an infinite number of shapes that a flexible object can take
on, so to plan motions efficiently we have to approximate these
shapes with a finite number of parameters. We also need to
model the physical properties of the object given a certain shape
parametrization. The model and associated computational effi-
ciency are influenced heavily by the material properties of the
object under consideration and the manipulation task.
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There has been great progress in simulating deformable ob-
jects, but so far there has been only limited success in developing
planners for deformable linear (one-dimensional) objects. We
are working towards this end. This paper concentrates on rep-
resenting and planning for curves of fixed length when given
manipulation constraints. The constraints arise from robot grip-
pers holding the endpoints of a wire, thereby fixing the positions
and tangents at the endpoints. We assume that the wire is free to
rotate about the endpoint tangents. In other words, the manip-
ulators have built-in compliance along the tangential direction.
This can be thought of as holding a wire with slippery fingers.
Our approach is almost independent of the model of the physical
properties of the wire. The physical model used in this paper can
easily be extended. We do not consider the motion planning for
the grippers. This is similar to the work on assembly planning
where the tools for assembly or removal of parts are not con-
sidered [1], [2]. The planning problem addressed by this paper
is: Given manipulation constraints for start and goal configura-
tions, 1) find stable configurations of the wire that satisfy those
constraints, and 2) find a path between these configurations such
that all configurations along the path are stable, as well. A stable
configuration is defined as a configuration with minimal strain
for given endpoint constraints. These configurations correspond
to minimal-energy curves. The contributions of this paper are an
efficient algorithm for computing minimal-energy curves and a
powerful local planner that computes paths of minimal-energy
curves. A key part of these contributions is a new, adaptive rep-
resentation for deformable linear objects. This work represents
a significant step towards a general purpose motion planner for
deformable linear objects.

Deformable linear objects are usually represented using fi-
nite element models (FEMs) [3]. Since the complexity of path
planning increases exponentially with the number of degrees of
freedom (DOFs) [4], this means that an extensive exploration
of the configuration space for deformable objects using FEMs
is very hard. Moreover, finding configurations that satisfy end-
point constraints or energy constraints is complicated by the ex-
istence of many local minima. Our approach has been to use
subdivision to make the path-planning problem for deformable
objects more tractable. Subdivision is an area of geometric mod-
eling concerned with the compact representation of curves and
surfaces [5]. In our case, subdivision allows us to adaptively re-
fine approximate solutions and reduce the tendency of getting
stuck in local minima. In our parametrization, we can compactly
represent shapes of varying complexity. Our planner can find
paths between curve configurations with a different number of
parameters.

The main motivation for our research comes from motion
planning for deformable linear objects. One important appli-
cation area is cable modeling and handling in the automotive
industry. Another application is surgical suturing (see Fig. 1).
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Fig. 1. Simulated surgical suture (image courtesy of D. Pai).

A suture is a flexible wire with negligible stretch that typically
needs to go from a straight configuration to a knot. Limited
visibility and limited tactile feedback can make this a chal-
lenging task for a surgeon. As part of a training simulator, a
motion planner for sutures can be a very useful tool for training
surgeons. A theoretical motivation for this work is to create
a better understanding of the accessible configuration space
of a flexible object. For example, little is known about the
topology of the set of stable configurations of a given flexible
object. Although this paper does not formally characterize
the topology of deformable linear objects, it does provide
techniques for approximating the accessible configuration
space using probabilistic roadmap methods (PRMs) [6]. As the
number of sampled configurations in the roadmap increases,
the roadmap becomes a more accurate representation of the
accessible configuration space.

The outline of the rest of the paper is as follows. Section II
briefly describes some related work. Section III explains what
minimal-energy curves are and why we are interested in them.
In Section IV, we introduce a subdivision scheme for computing
minimal-energy curves subject to endpoint constraints. As part
of the subdivision scheme we need to align curves with these
endpoint constraints. This exploits some of the symmetries that
minimal-energy curves have. This alignment procedure is ex-
plained in Section V. In Section VI, some performance improve-
ments of the basic algorithm are discussed. Here, we will also
discuss the stability of the algorithm with respect to some algo-
rithm parameters. In Section VII, we present a path-planning al-
gorithm for minimal-energy curves. Our minimal-energy curve
construction can be extended to multiple control points, which is
described in Section VIII. Section IX describes our implemen-
tation and gives some performance results. Finally, Section X
summarizes the contributions of this paper and outlines direc-
tions for future research.

II. RELATED WORK

The related work on deformable linear objects can be di-
vided into three overlapping categories: modeling, simulation,
and planning. In the geometric design community, stable con-
figurations of deformable linear objects are often called min-
imal-energy curves. These curves appear in the broader context
of fair curve and surface design [7]–[11]. Here, “fair” means
minimizing some functional (or energy function). In our case,
this functional is defined as the integral of curvature squared

plus torsion squared. We assume there is no stretching, i.e., the
length of the curve is fixed. There is very little work on finding
fair curves of fixed length subject to endpoint constraints. Our
work provides an algorithm for doing just that. The definition
of energy can be changed without affecting the rest of the algo-
rithm.

Fair curve design focuses almost exclusively on planar
curves. Usually, the length of the curve is either unconstrained
or there is a stretching energy term in the energy functional.
Horn [12] derives an analytic expression for a planar min-
imal-energy curve and uses arcs of a circle to approximate
minimal-energy curves. Kallay [13] extends this result to
planar minimal-energy curves of given length. Brunnett [11]
derives several properties of so-called free elastic curves: planar
minimal-energy curves of variable length without tangent con-
straints. Jou and Han [10] consider planar minimal-energy
curves of given length with tangent constraints at the end-
points. They also present a simple algorithm for computing
such curves. Simply put, the algorithm divides a curve in seg-
ments of constant curvature and solves the constrained energy
minimization problem as function of the curvatures of these
segments. In this paper, we extend this idea to three dimensions
(3-D) and make the algorithm more scalable to a large number
of segments.

Wesselink and Veltkamp [8], [9] describe several curve en-
ergy operators. The emphasis here is on interactive curve design.
To make this practical, approximations for bending, twisting,
and stretching energy are used. In contrast to other approaches,
this work is not limited to planar curves. Kallay [14] presents a
discrete approximation algorithm for finding 3-D minimal-en-
ergy curves of given length with endpoint constraints. Here, the
energy is just the integral of curvature squared, whereas we in-
clude the integral of torsion squared. The algorithm constructs
a polyline consisting of equal length segments. It iteratively ro-
tates all the points between any pair of vertices of the polyline
so as to minimize the discrete approximation of curvature.

Wakamatsu and Hirai [15] model the static deformation of a
linear object with four functions: three to describe the change
in orientation along the curve and one to describe the exten-
sion along the curve. These functions are approximated by a
linear combination of a set of basis functions. Given an en-
ergy function in terms of these coefficients, one can then easily
solve for the coefficients that result in a stable configuration.
Wakamatsu and Hirai also validated this model experimentally.
They found a good agreement between the theoretical predic-
tions and experimental results. Compared to this work, our work
offers a subdivision-based computational scheme to compute
stable configurations that appears to be much faster. We also use
this scheme to compute paths of stable configurations. In [16],
Wakamatsu et al. extend their results to the two-dimensional dy-
namic case. The model can be used to control the deformation
on a linear object. The control law in [16] was experimentally
verified.

To simulate a deformable object, we need to compute any
physically plausible configuration; not just stable configura-
tions. The emphasis is on efficiency in computing the response
of an object to internal and external forces. Phillips et al. [17]
use a spline of linear springs. Adaptive subdivision is used to
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handle stretching and contraction of the rope. Friction is not
modeled. Brown et al. [18] model a suture as a polyline (which
during rendering is replaced with a smooth spline). Forces
act on the vertices of the polyline. Using a few simple rules,
the positions and velocities of all vertices can be updated in
real time. Friction is not explicitly modeled, but the collision
resolution scheme produces a friction-like effect. More so than
the previous two papers, Pai [19] focuses on the dynamics of a
suture. A suture is modeled as a so-called Cosserat rod: a curve
with coordinate frames along the curve denoting the reference
orientation. The differential equations describing the dynamics
in this representation can be solved very efficiently. Remde
and Henrich [20] give an overview of simulation of deformable
linear objects and present a basic algorithm to perform “inverse
simulation,” i.e., solve for the object’s shape for given endpoint
constraints.

Hopcroft et al. [21] propose a programming language to
program deformable object manipulation. They describe basic
operations such as grasping a segment along a curve, moving
it, and dropping it, but also more complex operations, such
as crossing segments. A vision system is used to obtain the
configuration of the physical rope. Several knot programs were
experimentally verified. These knot programs were still written
“by hand.” Recently, Wakamatsu et al. [22] proposed a ma-
nipulation planner for knotting/unknotting that generates such
programs automatically. This planner has been implemented
on a 6-DOF manipulator with a camera.

Lamiraux and Kavraki [23] introduce one of the first open-
loop motion planners that deals with flexibility explicitly. In
their work, a flexible object is modeled using a finite element
mesh. They find stable configurations subject to manipulation
constraints using a global energy minimization. Bayazit et al.
[24] propose a path planner that first produces a path where
a deformable object is allowed to penetrate obstacles. It then
proceeds to deform the object to resolve any collisions. The
emphasis here is more on realistic looking motions rather than
modeling the underlying physics. Gayle et al. [25] introduce a
physically realistic planner with a new fast collision checking
scheme for flexible objects. Their planner uses a roadmap based
method [6] that samples in the workspace rather than in the con-
figuration space. Paths are generated for a point-robot in this
roadmap. A deformable object is then guided along these paths
as long as physical constraints can be satisfied. This approach
works well if the obstacle-free configuration space of the de-
formable object is not too dissimilar from the obstacle-free part
of the workspace. For certain important applications, such as
catheters moving through arteries, this is the case. Saha and Isto
[26] are currently developing a roadmap based planner for de-
formable linear objects. They use a fast simulator as a subroutine
to compute configurations near previously sampled configura-
tions. Our work can be used to replace this subroutine with one
that computes paths consisting only of stable configurations.

One of the difficulties with planning for deformable objects
is contacts between a deformable object and the environment.
Acker and Henrich [27] classify the different possibilities into
different topological states and describe their stability. They
also enumerate all possible state transitions. This kind of infor-
mation can be used to guide a path planner.

Ladd and Kavraki [28] applied motion planning techniques
to mathematical knots. Here, physical realism is irrelevant, but
the configuration space tends to be more complex than in the
aforementioned papers. Using an artificial potential function to
guide the sampling, they were able to untangle very complex
knots.

Sometimes, hyperredundant robots (or snake robots) are
modeled as flexible curves [29], [30]. In this context, min-
imal-energy curves may provide good reference shapes for
the robot that minimize joint movement. The work by Zan-
ganeh and Angeles [30] is especially similar to the modeling
of elastic wires. Similar to the approach taken in this paper,
they pose the problem of finding the optimal shape as an
optimization problem over spline parameters. Optimality of
a shape is expressed in terms of curvature and torsion. A
radically different approach to path planning for redundant
manipulators was taken by Nakamura and Hanafusa [31]. They
posed the problem as an optimal control problem. They reduce
the problem to a boundary value problem and use Pontryagin’s
maximum principle [32] to find an optimal solution for different
definitions of optimality.

In previous work [33], we presented an approximate repre-
sentation of minimal-energy curves using only ten parameters.
We described different methods to solve for these parameters
for given endpoint constraints. Although this parametrization
produced good results overall, there were cases where a good
approximation of a minimal-energy curve could not be found.
Moreover, it is computationally very expensive to verify if an
approximation is close to a curve that has minimal energy in the
variational sense. We, therefore, started investigating adaptive
parametrizations that vary the number of parameters based on
the complexity of a minimal-energy curve. We informally use
the term “complexity of a curve” to describe some measure of
the change in shape (i.e., curvature and torsion) along the curve.
This paper is a revised and expanded version of [34].

III. MINIMAL-ENERGY CURVES

Minimal-energy curves correspond to stable configurations of
the wire they represent. If we assume quasistatic dynamics, the
paths produced by our planner are as close as possible to what
would happen if a robot executes the plan. With minimal-energy
curves, we only have to consider dynamics to the extent that the
kinetic energy should be smaller than the energy needed to leave
a potential energy well. So, even if a robot cannot follow a com-
puted trajectory exactly, the configurations along the trajectory
act as attractors for configurations in a neighborhood.

Minimal-energy curves can be thought of as representing
wires with minimal strain. We assume that a straight line
segment without torsion represents the shape with zero strain.
The Darboux vector [35, p. 205], defined in terms of the Frenet
frame [36] as , describes the rotational strain
along the curve. Here, and are the tangent and binormal,
respectively, and and denote the torsion and curvature (see
Section IV-A for an overview of the nomenclature used in this
paper). We assume there is no translational strain: The wire
does not stretch. We define the energy of a curve to be the
integral of along the curve. In other words, the energy is
the integral of the curvature squared plus the torsion squared
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over the entire length of the curve. This simple model captures
the essential internal energy of a wire. Obviously, the bending
and twisting energy can be weighted differently and other terms
can be added, as well. For a more complete description of
the dynamics of elastica, see, e.g., [37]. We will first consider
only curves of constant length that satisfy constraints on the
positions and tangents at the two endpoints. This corresponds to
a wire being held by the endpoints. Finding such curves is non-
trivial. Splines tend to produce very smooth low-energy curves
that can match arbitrary endpoint constraints, but the length
of the splines is variable. A finite-element method, where we
would represent the curve by a large number of line segments
would preserve the length, but makes planning difficult because
we need many DOFs [23]. Finding a smooth curve of fixed
length that satisfies endpoint constraints is difficult, and finding
minimal-energy curves using a finite element method is even
more challenging.

Very little is known about 3-D minimal-energy curves of
given length. For planar minimal-energy curves with endpoint
constraints the following variational condition on curvature
and its second derivative has to be satisfied along a curve
(parametrized by arc length ):
for some constant [10] (without endpoint constraints ).
Unfortunately, there is no equivalent constraint for minimal-en-
ergy curves in 3-D.

The following two observations will be important in the rest
of this paper.

• The space of all minimal-energy curves exhibits many
symmetries: A minimal-energy curve is still a minimal-en-
ergy curve if we apply a translation, a rotation, a uniform
scaling, or a reflection. We will take advantage of this
property by only solving for minimal-energy curves in
some canonical form, from which all symmetric curves
can easily be derived.

• For a minimal-energy curve, every segment of that curve
is also a minimal-energy curve. This suggests that we can
locally improve an approximation of a minimal-energy
curve. We, therefore, conjecture that the complexity of
finding parameters for minimal-energy curves increases
linearly with the number of parameters required to repre-
sent that curve instead of exponentially.

IV. SUBDIVISION SCHEME FOR MINIMAL-ENERGY CURVES

Subdivision is an area of geometric modeling concerned with
compact representations of curves and surfaces [5]. The rep-
resentations consist of a coarse mesh or polyline and a set of
refinement rules. The refinement rules define how elements of
the mesh can be subdivided into smaller elements. The surface
represented by the mesh and refinement rules is the limit sur-
face obtained by iteratively applying the refinement rules to the
mesh. Typically, the rules can be thought of as a weighted inter-
polation scheme.

A. Nomenclature

In this section, we will briefly introduce the notation used in
this paper. Let a curve be parametrized by arc length . A
point on the curve is denoted . The tangent at that point
is written as or . The magnitude of , the deriva-

Fig. 2. Curve consisting of n helical segments. Each segment is parametrized
by curvature � , torsion � , and segment length s . The positions and tangents
of the endpoints are denoted by xxx and ttt (i = 0,1), respectively.

tive of , is called curvature and is written as . The vector
is the normal of the curve at and is or-

thogonal to . The cross product is called the
bi-normal. Together, , , and form the so-called Frenet
frame [36]. The magnitude of the is called torsion and is
denoted . We will introduce a compact representation of
curves with piecewise constant curvature and torsion. The pa-
rameters of such curves are described by configurations .

B. Representation

We have developed an algorithm for representing minimal-
energy curves inspired by subdivision techniques. By using sub-
division instead of a fine-grain representation, such as FEMs, we
gain computational efficiency and reduce the tendency of get-
ting stuck in local minima. There are three factors that make our
scheme more complicated than most subdivision schemes. First,
at each iteration we do not subdivide all segments simultane-
ously. Instead, we adaptively subdivide segments one at a time.
Second, to minimize the energy and at the same time maintain
the constraints on the endpoints, we need to solve a constrained
minimization problem rather than simply apply an interpolation
rule. Finally, we want to maintain the length of the curve. To ac-
complish this, we represent a curve as a sequence of segments
with constant curvature and torsion, i.e., parts of helices (see
Fig. 2). When a segment is subdivided, the sum of the lengths
of the new segments is equal to the length of the old segment.
Each segment of a curve can be described by curvature, torsion,
and length. So, for a curve consisting of segments, we need

parameters. Fig. 3 shows a minimal-energy curve and cor-
responding curve parameters obtained using our algorithm de-
scribed below.

We will describe a new algorithm that, given manipulator
constraints like the endpoints and tangents where a wire is held,
finds a minimal-energy curve that satisfies those constraints. We
assume that the wire is free to rotate about the endpoint tangents
to reach the shape with lowest energy. In other words, the ma-
nipulators have built-in compliance along the tangential direc-
tion. This can be thought of as holding a wire with slippery fin-
gers. The idea is to start with a simple curve that just satisfies the
endpoint constraints and keep refining it as long as we can lower
the energy of a curve. The basic refinement step can informally
be stated as follows: As long as the difference in curvature and
torsion between a segment and one of its immediate neighbors
is larger than some threshold, subdivide both and optimize the
curve parameters of the subdivided segments so as to simulta-
neously minimize the energy and the error in the endpoint con-
straints. Here, we make use of the observation that we can lo-
cally change the shape to get closer to a minimal-energy curve.
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Fig. 3. Minimal-energy curve of length 2. The curve is held at the endpoints,
constraining both the positions and the tangents. This is visualized using small
cylinders. The bottom two plots show the curvature and torsion along the curve.

We also take advantage of the symmetries by solving only for
minimal-energy curves in “canonical form” and aligning these
curves through an affine transform and scaling with the desired
endpoints and tangents. Typically, the error in the endpoint con-
straints is very close to zero after the first subdivision step. Sub-
sequent steps minimize the energy while maintaining the con-
straints.

The parametrization supports the following operations in a
straightforward manner: downsampling to a coarser resolution,
upsampling to a finer resolution, computing the distance (or
shape difference) between two curves, and finding points along
a curve. All these operations take time linear in the number of
segments. The distance between two curves and of length
1 is defined as

(1)
Because the curves have piecewise-constant curvature and tor-
sion, the integral simplifies to a summation. Using upsampling
and downsampling we can represent a curve at different levels
of detail. Curves in this representation can also be compressed
very well using, e.g., wavelets [38]. These primitives are all nec-
essary for path planning for minimal-energy curves in our repre-
sentation. It allows us to connect configurations with a varying
number of DOFs.

We can think of a curve in our representation as a kinematic
chain where the affine transforms from the start of a segment to
its end are controlled by the curvature and torsion parameters.
Below, we will derive a closed-form expression for the forward
kinematics of a piecewise-helical curve. This is useful to find a
curve that satisfies endpoint constraints. Let a piecewise-helical
curve consisting of segments be described by a matrix ,

where row contains the parameters for segment : .
A helix with curvature and torsion can be described by a
parametric unit-speed curve

Let denote the Frenet frame [36] along the curve. The rel-
ative change in orientation between the frame at and at

is then given by . Similarly, the relative change
in position is given by . After writing out
these expressions, we can obtain an expression for the homoge-
neous transform from the start of segment to
the end

where

and

(the subscript has been dropped for convenience). The ho-
mogeneous transform from the start of the curve to the end is
simply the product of the transforms for each segment

C. Energy Minimization

If a curve segment is subdivided into smaller segments, de-
scribed by the matrix , the curvature and torsion parameters
of the smaller segments are optimized to minimize

energy (2)

where energy (3)

is a penalty constant, and the error is measured after align-
ment, as described in the next section. A sufficiently large value
for , combined with the exponential scaling of the error, al-
most guarantees that the error is very close to zero after one or
two subdivision steps. Note that we are locally optimizing the
shape and at the same time trying to satisfy global endpoint con-
straints. Each subdivision can be performed fairly quickly, since
we are minimizing over only a small number of parameters.

D. Subdivision Details

In our implementation, we have chosen to subdivide each
segment into two smaller segments. Subdividing one segment
would give us four parameters to optimize over: two curvature
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parameters and two torsion parameters. However, satisfying the
constraints requires at least five DOFs: three for the endpoint po-
sition and two for the endpoint tangent. Therefore, we need to
subdivide two segments at once, giving us eight DOFs, three of
which can be used for energy minimization. Initially, we start off
subdividing two helical segments of equal length with arbitrary
curvature and torsion. To decide which segments to subdivide
in subsequent steps, we consider the difference in curvature and
torsion between consecutive segments. Let the difference be-
tween segment and be defined as

Generally speaking, the minimization in a subdivision step will
minimize the energy by smoothing out the difference in curva-
ture and torsion. We maintain a priority queue of the differences
between all consecutive segments. The largest difference is as-
signed the highest priority. Intuitively, subdividing the segments
with the largest difference between them should likely result in
the largest decrease in the energy and the error. We keep subdi-
viding as long as the error in the endpoint constraints is larger
than some threshold and as long as the difference between some
consecutive segments is larger than some other threshold. If the
difference in curvature and torsion between any pair of consec-
utive segments is small, then subdividing is not going to reduce
the energy much.

One detail ignored in the explanation above is that the pair of
segments being subdivided may not be of equal length. If they
are of equal length, then both segments are subdivided. If one is
longer than the other, only the longer segment is subdivided into
segments with length equal to that of the shorter segment. This
approach gives all segments equal weight during minimization.
Observe that the number of curve parameters being optimized
is at least 6, just large enough to maintain endpoint constraints
and lower the energy. By keeping the branching factor of the
subdivision as small as possible, we aim to arrive at the most
compact representation.

V. ALIGNMENT OF A CURVE TO MATCH CONSTRAINTS

In our subdivision scheme, we maintain a curve in canonical
form and use an alignment procedure to match up the curve
with the endpoint constraints as best as possible. As we men-
tioned before, the curve representation would not change if we
apply a translation, rotation, scaling, or reflection to the endpoint
constraints. The alignment procedure returns the transform that
brings the endpoint constraints in canonical form such that the
error in satisfying the constraints (as defined below) is mini-
mized. This way, we exploit the symmetries of minimal-energy
curves.

Suppose we are interested in finding a curve of length ,
having endpoints and and unit tangents and . Our sub-
division scheme produces curves in canonical form: They are all
of length 1 and with and . Let and
be the position and tangent at endpoint 1 of a curve in canon-
ical form. They are simply the fourth and first column of . If

describes the curve parameters of the segments being sub-

divided, then can be written as ,
where and are the combined transforms for the segments
that precede and follow , respectively. So, as changes
during the energy minimization, it is very easy to update
and, therefore, also and . The alignment procedure de-
scribed below simply constructs another transform that aligns

with a transform derived from the endpoint constraints.
During energy minimization we use a penalty method to sat-

isfy the endpoint constraints. The error in the endpoint con-
straints is measured after alignment. The alignment is done in
two steps. First, we apply a transform that minimizes the trans-
lational error. In the second step, we apply a rotation that mini-
mizes the error in the tangents, but does not move the endpoints.
Let and . The translational error
is . This error is minimized if we apply a rotation to

such that the angle between and is 0. The next
step is to minimize the error in the tangents. Let . We
want to find a rotation about this axis such that the following
error measure is minimized

where is some positive weighting constant. Note that the error
is equal to 0 if and only if there is no translational error and
there exists a rotation that simultaneously aligns with
and with . Using Rodrigues’ formula [39], we can write
as , where is the matrix such
that for any vector . Hence, the derivative of the
error function with respect to can be written as

So, the extrema of the error function are at
. By inspection, we can de-

termine which value for minimizes the error. The scaling,
translation, and the two rotations and can be combined in
one transform that aligns a curve in canonical form to general
constraints.

VI. CURVE REFINEMENT AND STABILITY

In this section, we describe different ways to refine the basic
subdivision algorithm for computing minimal-energy curves.
Refinement is not strictly necessary, but is used to improve/test
the stability and reproducibility. The goal of refinement is to
lower the energy of a curve even further. Refinements come
in two forms: local and global refinements. Local refinements
change the basic subdivision step. Global refinements use the
basic subdivision algorithm as a subroutine to find better ap-
proximations of minimal-energy curves. Related to refinement
is the issue of stability. Ideally, the refinement procedures do not
drastically change the shape. Small changes in the initial guess
for torsion and curvature should produce curves that have sim-
ilar curvature and torsion and, thus, similar energy and a similar
embedding in . Although we cannot prove that our subdivi-
sion scheme has this property, we will show below that, at least
in practice, that seems to be the case.
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A. Local Refinement

There are several ways the subdivision scheme can be im-
proved. The main flaw of the basic scheme is that it does not
address singularities. By “singularities,” we mean that the effec-
tive number of DOFs is smaller than the number of parameters
we can change. If the “true” minimal-energy curve is planar,
then making the torsion nonzero will increase the energy. The
effective number of DOFs is, therefore, only four, if we are opti-
mizing the curve parameters of four segments, rather than eight
DOFs in the general case. Since we need five DOFs just to sat-
isfy the endpoint constraints, we will not be able to minimize
the energy. If we could recognize this situation, then we could
increase the number of segments to be subdivided so that we
have a sufficient number of DOFs. If the error in the endpoint
constraints is small (which is usually the case after the first sub-
division), then we can use the affine transform for the segments
under consideration to check if the curve segment is close to
being planar. A necessary condition for a curve segment to be
planar is that the vector connecting the endpoints and the tan-
gents are coplanar. Using the notation from the previous section,
this condition can be expressed as

The left-hand side measures the volume of the paralleliped de-
fined by , , and . If this expression is 0 (or close to 0), we
subdivide one more neighboring segment, namely the one that
has the largest difference with the segments already selected.
Sometimes, this refinement is still not enough. For instance, if
after minimizing the energy has hardly decreased, then we may
want to add a neighboring segment and redo the subdivision and
energy minimization.

B. Global Refinement

In our implementation, the scheme starts off with two
segments with the following parameters:

and . This choice is
arbitrary; many other choices would work equally well, on av-
erage. However, for specific endpoint constraints, there may be
specific initial conditions that result in a minimal-energy curve
with lower energy. Note that, for given endpoint constraints,
there may exist many different minimal-energy curves. To see
this, consider the following simple example. Suppose we want
a minimal-energy curve where both endpoints are at the origin
and both tangents are along the axis. Then, a circle of the
appropriate radius is the global energy minimum, but a curve of
constant curvature that makes a turn is also
a minimal-energy curve. If we make the curve parameters of
the initial segments “small,” then we are biasing the subdivision
scheme towards the global energy minimum.

There are three ways to improve the chances of finding a
curve at a global energy minimum. The first approach is to
just repeatedly run the subdivision scheme starting from dif-
ferent initial curve parameters. Obviously, this is computation-
ally rather expensive. The second approach is to run the subdi-
vision scheme once with arbitrary initial curve parameters, and

use the final curve to come up with an improved guess for the
initial curve parameters. This improved guess can be derived by
downsampling a minimal-energy curve to a coarse resolution
and start the subdivision at that resolution. The second approach
is more efficient than the first one, but is limited to finding min-
imal curves in a neighborhood of the initial curve. Finally, to fur-
ther refine a curve we can perform a global energy minimization,
where the energy and error (see expression 2) are minimized as a
function of all curve parameters. Of course, all these techniques
can be combined for even better results.

C. Refinement and Stability

We can now consider the stability of the subdivision algo-
rithm. In our implementation, we added the local refinements
mentioned above and tested the three global refinement tech-
niques. Fig. 4 shows the curvature and torsion profiles for six
different sets of endpoint constraints. The endpoint positions
were picked uniformly random within a unit ball, and the tan-
gents were picked uniformly random as points on a unit sphere.
The curve length was set to be 2 (the diameter of a unit ball).
The subdivision and energy minimization tolerances were set to
very small values so that we can study what limit curves the sub-
division algorithm converges to. For each set of endpoint con-
straints, we computed 30 different curves as follows. The thick
solid curve shows the profile for the curve constructed using the
default initial parameters. The dashed curve shows the profile
after downsampling that curve to eight segments and rerunning
the subdivision scheme. The remaining 28 curves were created
with initial curve parameters drawn uniformly random from the
[ ] interval. The curve with lowest energy is drawn with a
dot-dash line. In the legend, the energies for these curves are
shown. The color of the curves corresponds to the energy: A
dark color means low energy, a light color means higher energy.
This figure shows that for certain endpoint constraints the sub-
division scheme is relatively insensitive to the initial conditions,
whereas, for others, the scheme can converge to several distinct
minimal-energy curves. Generally speaking, the different initial
curve parameters produce a small number of clusters of min-
imal-energy curves. Within a cluster, curves tend to have sim-
ilar energy. The default initial curve parameters tend to produce
curves in a low-energy cluster. Notice in the last set of curves
in Fig. 4, there can be a large difference between the curves,
even though the curvature and torsion profiles do not seem to be
that different. In this case, this is caused by the turn at the end
of the curves in the low-energy cluster that is not present in the
high-energy cluster.

We also tried the global optimization of curve parameters
as described above. The minimization procedure used was a
quasi-Newton method with a BFGS approximation to the Hes-
sian, and with gradients computed using finite differences [40].
This produced curves that were very close to the starting curve
for the optimization. This suggests that the subdivision scheme
produces curves that are close to being minimal in the varia-
tional sense.

VII. PATH PLANNING FOR MINIMAL-ENERGY CURVES

The path-planning problem for minimal-energy curves can be
stated as: Given endpoint constraints for a start and goal curve,
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Fig. 4. Curve refinement. The curvature and torsion graphs show the curvature and torsion profile for different minimal-energy curves with the same endpoint
constraints that are plotted in the 3-D graphs immediately above them.

can we find: 1) minimal-energy curves that satisfy those con-
straints; and 2) a deformation from the start curve to the goal
curve such that all intermediate curves are also minimal-energy
curves and are not colliding with any obstacles. The planner
we present below is described in terms of a roadmap-based
method [6], but it is not tied to any roadmap construction al-
gorithm. In fact, it could also be used with a tree-based planner
[41]–[43]. Various algorithms have been proposed for the con-
struction of roadmaps and trees elsewhere [44], and will not be
discussed in this paper. Instead, we will focus on the specifics of
the local planner for minimal-energy curves. The general idea
of roadmap and tree-based planners is to sample collision-free
configurations and connect ones that are close together. This re-
sults in a graph representation that compactly represents the free
space of a robot. Finding a path between configurations is re-
duced to finding a path in this graph. In our case, we do not
handle collisions at this stage, but we impose the constraint that
every configuration corresponds to a minimal-energy curve.

To solve the path-planning problem, we propose the fol-
lowing approach. First, a roadmap of all minimal-energy curves
is precomputed in the absence of obstacles. Due to the symme-
tries that exist in the space of these curves, it suffices to build
a roadmap for curves in canonical form. The local planner
that connects minimal-energy curves is described below. The

second step is to build another roadmap for the environment of
interest that may include obstacles. The local planner for this
roadmap uses the roadmap of the first stage as a lookup table. It
will just need to check whether paths in the first roadmap after
applying the alignment transform are collision free. This ap-
proach is reminiscent of the planner described in [45]. Whereas
Leven and Hutchinson precompute a roadmap in configuration
space and modify this roadmap as obstacles are added, we only
do this for “shape space.” By taking advantage of the sym-
metries in the configuration space, we can re-use the roadmap
for shape space in other parts of the configuration space. The
subdivision scheme presented in this paper is efficient enough
that computing a roadmap of the shape space is possible.

The problem that the local planner needs to solve can be
stated as follows. Given two minimal-energy curves, does there
exist a deformation from one curve to another such that all in-
termediate curves are all minimal-energy curves? The solution
we found is very similar to the approach we took in [33]. We
find a sequence of minimal-energy curves connecting the start
and goal curve such that consecutive curves are at most a dis-
tance apart [see (1)]. The path planner recursively finds a path
as follows. It first computes minimal-energy curves for the start
and goal. It then linearly interpolates the curvature and torsion
between the two curves to obtain a curve that has distance ,
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Fig. 5. Path of minimal-energy curves. The inset shows the start and goal
curves. The start curve connects start0 and start1, the goal curve connects goal0
and goal1.

, to the start curve. This solution is downsampled to a
very coarse resolution and is used as an initial guess for a min-
imal-energy curve that satisfies the interpolated endpoint con-
straints. The ability to quickly go from a complex representation
to a very coarse one is critical in our path-planning algorithm.

The interpolation scheme for the endpoint constraints is
slightly more complicated. A straight-line interpolation be-
tween endpoints would not work well, for instance, because
this may cause the curve to “fold up” onto itself and cause large
shape changes. Instead, we linearly interpolate the midpoint

between the endpoints and . We use spherical
interpolation to determine the position of the endpoints relative
to the mid-point. The tangents are also spherically interpolated.
This is done so that the relative change between the endpoints
is small, which makes it more likely that the minimal-energy
curves connecting successive pairs of interpolated endpoints
are close together as well.

Given the interpolated endpoint constraints and the initial
guess for the curve parameters, we apply our subdivision
scheme to obtain a minimal-energy curve. If the distance be-
tween the resulting curve and the starting curve is larger than
, the path planner fails. Otherwise, we make the new curve

the starting curve and recurse. Alternatively, we can recurse by
making the new curve the goal curve, and making the old goal
curve the new start curve. This way a path is “grown” from
both directions. The planner terminates if the distance between
the start and goal is less than or if some maximum number
of iterations is exceeded (in which case the planner fails). The
path returned by the planner consists of all the minimal-energy
curves generated.

Fig. 5 shows an example of a path as found by our path planner.
Fig. 6 shows the curvature and torsion of the minimal-energy

Fig. 6. Curvature and torsion along a path of minimal-energy curves.

curves that constitute the path. From this figure it is clear that the
planner is “well-behaved”: The change in shape along each curve
is smooth, as is the change in shape along the path.

VIII. MULTIPLE CONTROL POINTS

So far, we have assumed that the only control points and tan-
gents that a minimal-energy curve needs to pass through are at
the endpoints. In practice, a curve may collide with obstacles in
the environment or with itself. We would like to model the con-
straints imposed by the obstacles as well. Solving for the contact
points such that the curve is at an energy minimum is extremely
difficult in general. To make the problem more tractable, we will
assume that contact points are given as well as the tangents at
those points. We can think of this as a curve passing through a
number of cylinders. This is also a useful abstraction if we are
trying to route cables through a number of rings.

To find a minimal-energy configuration, we solve for each
curve segment between consecutive control points separately
while maintaining the global length constraint. Initially, we al-
locate to each segment a length of the curve proportional to the
workspace distance between the endpoints of the segment. The
workspace distance between control point and is defined
as

where and specify the position and tangent of control point
. If we think of tangents as points on a sphere, then the dis-

tance between tangents corresponds to the length of the shortest
geodesic on the sphere connecting two tangents. So, the work
space distance is simply the sum of the distance between the
positions and the distance between the tangents. This distance
is only used as a heuristic to pick initial guesses for the curve
lengths between subsequent control points and start the energy
minimization. As the linear distance increases, the difference in
tangents matters less, since the curve will not have to make any
sharp turns. This idea is captured by this heuristic.
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Fig. 7. Minimal-energy curve of length 9 passing through 13 control points and
tangents to spell the word “cello.”

After we have found initial guesses for the lengths needed to
connect consecutive control points, we solve each minimal-en-
ergy curve segment separately. The energy of the whole curve
is simply the sum of the energies of the curve segments. Sup-
pose we have curve segments and the lengths of the segments
are given by . Then, we can further minimize the en-
ergy of the curve by varying the initial guesses for
(note that ). We use a general constrained op-
timization technique for this. The constraints arise due to upper
and lower bounds on the ’s. A lower bound for is the Carte-
sian distance between the corresponding control points, since
a curve segment needs to be long enough to connect the con-
trol points. An upper bound for is obtained by subtracting the
lower bound for all ’s from . In other words, we
cannot use a curve length for the th segment that would make
it impossible to satisfy the lower bounds on the other segments.
The energy minimization will not necessarily find a global min-
imum, but in our simulations, it produced good results. Fig. 7
shows a minimal-energy curve of fixed length connecting 13
control points. The control points are drawn as small cylinders
to emphasize that the curve also needs to match the tangents at
those points. Our approach works in 3-D; the curve in Fig. 7 is
planar only because it is easier to visualize.

IX. NOTES ON THE IMPLEMENTATION

The subdivision scheme and the path planner described in
this paper have been in implemented in C++. We also imple-
mented Matlab bindings so that almost all functionality in the
C++ classes can be accessed from Matlab. For energy minimiza-
tion, we made use of a nonlinear optimization library called
OPT++ [46]. In particular, in the subdivision step, we used a
quasi-Newton method with a BFGS approximation to the Hes-
sian, and with numerically computed derivatives [40]. In the op-
timization of curve segment lengths, we used a derivative-free
parallel direct search [47].

We evaluated the performance of the subdivision scheme by
randomly selecting constraints for the endpoints and timing
how long it takes to compute the corresponding minimal-energy
curve. The positions were picked uniformly at random within
a unit ball, and the tangents were picked uniformly at random
as points on a unit sphere. The curve length was set to be 2, the
branching factor was 2, the subdivision tolerance was 0.001,
the energy minimization tolerance was set to , and the
minimum segment length was set to 0.002. The implementation

uses the local refinement rules described in Section VI, but not
the global refinement techniques. We generated 50 000 random
curves and computed the following statistics:

mean
median

std. dev.
The error denotes the error in the endpoint constraints after
alignment as described in Section V. These results were ob-
tained on a Linux workstation with an AMD Athlon XP 2600
processor. From the table above, we see that the computation
of minimal-energy curves is reasonably fast. Note also that
the number of segments needed to represent a minimal-energy
curve varies significantly, which shows the benefit of a vari-
able-resolution representation. It helps speed up path planning
by using only as many parameters as necessary.

X. DISCUSSION

This paper describes a new approach to path planning for
deformable linear objects. Our approach makes it possible to
explore the entire space of stable, collision-free configurations.
The stable configurations can be represented with minimal-en-
ergy curves. We introduced an algorithm to construct such
curves very efficiently. The size of the representation adapts
automatically to the geometric complexity of the underlying
curve. With this representation it is easy to find paths between
minimal-energy curves such that all curves along the path are
also minimal-energy curves. This work has applications in
simulated and automated suturing, cable routing, and hyperre-
dundant/snake robots.

In future work, we plan to explore the following problems.
We would like to develop a more complete model for flexible ob-
jects in contact with obstacles. The results in Section VIII where
we modeled contact points as being fixed in space are a starting
point, but even finding the contact points such that a curve is at
an energy minimum is very difficult. The location depends on
the geometry of the obstacle and on the contact kinematics be-
tween the curve and the object.

The model we proposed can easily be extended to a more
realistic model of energy. Clearly, giving bending energy and
twisting energy different weights by weighting curvature and
torsion differently in (3) would not affect the algorithm at all.
Wire extension can be incorporated by relaxing the assumption
that the segment lengths sum up to a constant length . In the
subdivision algorithm, segment lengths are, in that case, also
optimized over to lower the energy. The energy function can
then take the following form:

energy

where is the natural, unextended length of segment , and
. Adding gravity is also possible, but this would remove

some of the symmetries that we exploited in our canonical form.
There is still translational symmetry and rotational symmetry
about the axis (assuming gravity acts along the axis). To
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include gravity in the energy function, it is necessary to inte-
grate the potential energy along the curve. Due to our simple
parametrization, this integral can be simplified to a summation.

In conclusion, we have presented a general framework for
path planning for deformable linear objects. It has few depen-
dencies on the energy model used. This framework can be used
to build up a roadmap of the entire shape space formed by all
minimal-energy curves, which is something that was not pos-
sible with previously proposed methods.
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[6] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Aug.
1996.

[7] H. P. Moreton and C. H. Séquin, “Function optimization for fair surface
design,” in Proc. SIGGRAPH Conf., 1992, pp. 167–176.

[8] R. C. Veltkamp and W. Wesselink, “Modeling 3D curves of minimal
energy,” in Proc. Computer Graphics Forum, 1995, vol. 14, no. 3, pp.
97–110.

[9] W. Wesselink and R. C. Veltkamp, “Interactive design of constrained
variational curves,” Comput. Aided Geom. Des., vol. 12, no. 5, pp.
533–546, 1995.

[10] E. Jou and W. Han, “Minimal-energy splines with various end con-
straints,” in Curve and Surface Design, H. Hagen, Ed. Philadelphia,
PA: SIAM, 1992, pp. 23–40.

[11] G. H. Brunnett, “Properties of minimal-energy splines,” in Curve and
Surface Design, H. Hagen, Ed. Philadelphia, PA: SIAM, 1992, pp.
3–22.

[12] B. K. P. Horn, “The curve of least energy,” ACM Trans. Math. Softw.,
vol. 9, no. 4, pp. 441–460, Dec. 1983.

[13] M. Kallay, “Plane curves of minimal energy,” ACM Trans. Math.
Softw., vol. 12, no. 3, pp. 219–222, 1986.

[14] ——, “Method to approximate the space curve of least energy and pre-
scribed length,” Comput.-Aided Des., vol. 19, no. 2, pp. 73–76, 1987.

[15] H. Wakamatsu and S. Hirai, “Static modeling of linear object deforma-
tion based on differential geometry,” Int. J. Robot. Res., vol. 23, no. 3,
pp. 293–311, Mar. 2004.

[16] H. Wakamatsu, K. Takahashi, and S. Hirai, “Dynamic modeling of
linear object deformation based on differential geometry coordinates,”
in Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain, 2005, pp.
1040–1045.

[17] J. Phillips, A. Ladd, and L. E. Kavraki, “Simulated knot tying,”
in Proc. IEEE Int. Conf. Robot. Autom., Washington, DC, 2002,
pp. 841–846.

[18] J. Brown, J.-C. Latombe, and K. Montgomery, “Real-time knot
tying simulation,” Vis. Comput., vol. 20, no. 2–3, pp. 165–179,
2004.

[19] D. K. Pai, “STRANDS: Interactive simulation of thin solids
using Cosserat models,” presented at the Computer Graphics
Forum, 2002.

[20] A. Remde and D. Henrich, “Direct and inverse simulation of de-
formable linear objects,” in Robot Manipulation of Deformable
Objects, ser. Advanced Manufacturing, D. Henrich and H. Wörn,
Eds. New York: Springer-Verlag, 2000, pp. 43–70.

[21] J. E. Hopcroft and J. K. Kearney, “A case study of flexible object ma-
nipulation,” Int. J. Robot. Res., vol. 10, no. 1, pp. 41–50, 1991.

[22] H. Wakamatsu, A. Tsumaya, E. Arai, and S. Hirai, “Manipulation plan-
ning for knotting/unknotting and tightly tying of deformable linear ob-
jects,” in Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain, 2005,
pp. 2516–2521.

[23] F. Lamiraux and L. E. Kavraki, “Planning paths for elastic objects
under manipulation constraints,” Int. J. Robot. Res., vol. 20, no. 3, pp.
188–208, 2001.

[24] O. B. Bayazit, J.-M. Lien, and N. M. Amato, “Probabilistic roadmap
motion planning for deformable objects,” in Proc. IEEE Int. Conf.
Robot. Autom., 2002, vol. 2, pp. 2126–2133.

[25] R. Gayle, W. Segars, M. Lin, and D. Manocha, “Path planning for de-
formable robots in complex environments,” presented at the Robot.:
Sci. Syst. Conf., 2005.

[26] M. Saha and P. Isto, “Motion planning for robotic manipulation of de-
formable linear objects,” in Proc. IEEE Int. Conf. Robot. Autom., Or-
lando, FL, pp. 2478–2484.

[27] J. Acker and D. Henrich, “Manipulation of deformable linear objects:
from geometric model towards program generation,” in Proc. IEEE Int.
Conf. Robot. Autom., Barcelona, Spain, 2005, pp. 1553–1559.

[28] A. M. Ladd and L. E. Kavraki, “Using motion planning for knot untan-
gling,” Int. J. Robot. Res., vol. 23, no. 7–8, pp. 797–808, 2004.

[29] G. S. Chirikjian and J. W. Burdick, “A modal approach to hyper-re-
dundant manipulator kinematics,” IEEE Trans. Robot. Autom., vol. 10,
no. 3, pp. 343–354, Jun. 1994.

[30] K. E. Zanganeh and J. Angeles, “The inverse kinematics of hyper-re-
dundant manipulators using splines,” in Proc. IEEE Int. Conf. Robot.
Autom., 1995, pp. 2797–2802.

[31] Y. Nakamura and H. Hanafusa, “Optimal redundancy control of robot
manipulators,” Int. J. Robot. Res., vol. 6, no. 1, pp. 32–42, 1987.

[32] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mis-
chenko, The Mathematical Theory of Optimal Processes. New York:
Wiley, 1962.

[33] M. Moll and L. E. Kavraki, “Path planning for minimal energy curves
of constant length,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, pp.
2826–2831.

[34] ——, “Path planning for variable resolution minimal-energy curves of
constant length,” in Proc. IEEE Int. Conf. Robot. Autom., 2005, pp.
2142–2147.

[35] A. Gray, Modern Differential Geometry of Curves and Surfaces with
Mathematica, 2nd ed. Boca Raton, FL: CRC, 1997.

[36] B. O’Neill, Elementary Differential Geometry, 2nd ed. San Diego,
CA: Academic, 1997.

[37] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th
ed. New York: Dover, 1987.

[38] G. Strang, “Wavelets and dilation equations: A brief introduction,”
SIAM Rev., vol. 31, pp. 613–627, 1989.

[39] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Boca Raton, FL: CRC, 1994.

[40] J. Dennis and R. Schnabel, Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-
Hall, 1983.

[41] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” Int. J. Comput. Geom. Appl., vol. 9, no. 4–5, pp.
495–512, 1999.

[42] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.

[43] A. Ladd and L. E. Kavraki, “Motion planning in the presenece of drift,
underactuation, and discrete system changes,” in Robotics: Science and
Systems I. Boston, MA: MIT Press, 2005, pp. 233–241.

[44] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Cambridge, MA: MIT Press,
2005.

[45] P. Leven and S. Hutchinson, “Toward real-time path planning in
changing environments,” in Algorithmic and Computational Robotics:
New Directions. New York: A. K. Peters, 2001.

[46] J. C. Meza, “OPT++: An object-oriented class library for nonlinear op-
timization,” Sandia Nat. Lab., Tech. Rep. SAND94-8225, 1994 [On-
line]. Available: http://csmr.ca.sandia.gov/projects/opt++

[47] J. E. Dennis, Jr. and V. Torczon, “Direct search methods on parallel
machines,” SIAM J. Optim., vol. 1, no. 4, pp. 448–474, Nov. 1991.



636 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 4, AUGUST 2006

Mark Moll (M’99) received the M.S. degree in com-
puter science from the University of Twente, Twente,
The Netherlands, in 1995, and the Ph.D. degree in
computer science from Carnegie Mellon University,
Pittsburgh, PA, in 2002. His thesis work focused on
shape reconstruction of unknown shapes using tactile
data.

He is currently a Research Scientist with the Infor-
mation Sciences Institute (ISI), Marina del Rey, CA.
His research interests include self-reconfigurable
robots, motion planning, robotic manipulation,

computational geometry, shape reconstruction, tactile sensing, parts orienting,
and computational biology.

Lydia E. Kavraki (M’99) received the B.A. degree
in computer science from the University of Crete,
Crete, Greece, and the Ph.D. degree in computer
science from Stanford University, Stanford, CA.

She is the Noah Harding Professor of Computer
Science and Bioengineering at Rice University,
Houston, TX. Her research is in physical algorithms
and their applications to robotics and bioinformatics.
Her recent work focuses on the development of
methods for robot planning in high dimensions
and with physical constraints, planning with sensor

nets, assembly planning, micromanipulation using microelectromechanical
systems, and flexible object manipulation. She also applies robotics methods to
computational structural biology.

Dr. Kavraki is a member of ACM and a Fellow of the American Institute
for Medical and Biological Engineering. Her awards include the Grace Murray
Hopper Award from the Association for Computing Machinery, a Sloan Fel-
lowship, and the Early Academic Career Award from the IEEE Robotics and
Automation Society.


