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Abstract

Exploring the conformational space of proteins is critical to characterize their functions. Numerous

methods have been proposed to sample a protein’s conformational space, including techniques developed

in the field of robotics and known as sampling-based motion-planning algorithms (or sampling-based

planners). However, these algorithms suffer from the curse of dimensionality when applied to large

proteins. Many sampling-based planners attempt to mitigate this issue by keeping track of sampling

density to guide conformational sampling toward unexplored regions of the conformational space. This

is often done using low-dimensional projections as an indirect way to reduce the dimensionality of the

exploration problem. However, how to choose an appropriate projection and how much it influences

the planner’s performance are still poorly understood issues.

In this paper, we introduce two methodologies defining low-dimensional projections that can be used by

sampling-based planners for protein conformational sampling. The first method leverages information

about a protein’s flexibility to construct projections that can efficiently guide conformational sampling,

when expert knowledge is available. The second method builds similar projections automatically,

without expert intervention. We evaluate the projections produced by both methodologies on two

conformational-search problems involving three middle-size proteins. Our experiments demonstrate

that (i) defining projections based on expert knowledge can benefit conformational sampling, and

(ii) automatically constructing such projections is a reasonable alternative.

Key words: protein conformational sampling, protein flexibility, sampling-based planning,
low-dimensional projection.

1 Introduction

A protein’s activity is known to be characterized and modulated by its structure and the way
it changes (Hegyi and Gerstein, 1999; Murphy, 2001). Understanding how a protein switches
between conformations is essential to treat or prevent diseases related to the protein’s dysfunc-
tion (Carlson, 2002). This requires gathering information about the protein’s conformational
space, i.e., the space of all possible states of the protein (Hatfield and Lovas, 2014). Some infor-
mation can be obtained experimentally (Schröder, 2015; van den Bedem and Fraser, 2015; Xu
et al., 2015), but computational methods, such as molecular dynamics, are routinely involved
in this process (Dror et al., 2012; Phillips et al., 2005; Seeliger and de Groot, 2009).
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Initially developed in the field of robotics, sampling-based motion planning algorithms have
been very successful at exploring a protein’s conformational space (see, e.g., Al-Bluwi et al.
(2012); Gipson et al. (2012)). They have been applied in various studies, to analyze pro-
tein loops (Cortés et al., 2004; Shehu and Kavraki, 2012), describe large-scale conformational
changes (Haspel et al., 2010; Luo and Haspel, 2013; Molloy and Shehu, 2015; Raveh et al., 2009),
model protein folding (Nath et al., 2012), or simulate protein-ligand unbinding (Devaurs et al.,
2013). Their intrinsic principle is to randomly sample the conformational space (usually using
a guiding heuristic) and build a graph over this space: nodes correspond to low-energy protein
states and edges represent potential local transitions between them. This graph describes the
topology of the underlying energy landscape and the connections between low-energy areas of
the conformational space.

Among the numerous sampling-based planners, we focus on “expansive” planners (Hsu et al.,
1999; Ladd and Kavraki, 2005; Şucan and Kavraki, 2010). They iteratively grow their graph
by expanding it toward unexplored areas, which requires keeping track of conformational-space
coverage. This is often done using low-dimensional projections, monitoring coverage of the
projection space instead. Even though proteins comprise hundreds or thousands of Degrees of
Freedom (DoFs), using dimensionality reduction techniques is justifiable: functionally-relevant
protein motions usually involve residues moving in a correlated fashion, and can therefore be
described with a few collective DoFs (Amadei et al., 1995; Teodoro et al., 2003).

Several approaches have been suggested to define low-dimensional projections that can guide
conformational sampling. When specifically looking for a conformational pathway between
two protein states, a simple 1-dimensional projection can be defined using the distance to
the goal state (Molloy and Shehu, 2015). When freely exploring conformational space, more
sophisticated projections have been proposed, based on molecular energy (Olson et al., 2012)
and structural properties of proteins, described, e.g., using contact matrices (Olson et al.,
2012) or specific interatomic distances (Ballester and Richards, 2007; Shehu and Olson, 2010).
However, there exists little work on analyzing whether such projections are beneficial (Olson
et al., 2012). Interestingly, when using expansive planners, even randomly-generated projections
can be effective, at least for robotic articulated mechanisms (Şucan and Kavraki, 2009).

In this work, we focus on generating low-dimensional linear projections using some charac-
terization of local protein flexibility, which relates to secondary structure. This is a common
strategy, a typical instance being known as rigidity analysis, that has mostly been used to guide
the conformational search locally (Luo and Haspel, 2013; Thomas et al., 2007). Here, on the
other hand, we define projections that can guide the search globally.

In this paper, we propose a methodology leveraging expert knowledge about a protein’s flex-
ibility to construct projections that effectively guide the conformational sampling performed by
expansive planners. These “expert” projections often perform better than randomly-generated
projections and “misguided” projections (designed in contradiction with the available flexibility
information, for testing purposes). We also propose a technique to automatically build projec-
tions that are in essence similar to expert projections, but require no expert intervention. We
show that these automatically-built projections perform reasonably well and represent a useful
alternative to expert projections.

This paper is an extended version of Novinskaya et al. (2015). Our main additional contri-
bution is the definition of automatically-built projections. We also evaluate the impact of using
different projections more thoroughly, by assessing conformational-space coverage, additionally
to projection-space coverage.
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2 Methods

2.1 Structured Intuitive Move Selector (SIMS)

Our work builds on the Structured Intuitive Move Selector (SIMS) computational frame-
work (Gipson et al., 2013), which allows exploring a protein’s conformational space using
robotics-inspired sampling techniques. In SIMS, conformational sampling is restricted to using
biophysically plausible perturbations of the protein’s structure, referred to as “protein moves.”
These are common perturbation strategies: loop sampling, rigid-body motion (fix one loop’s
end and move the other end), energy minimization, and random perturbations. To implement
these moves and calculate molecular energy, SIMS relies on Rosetta (Das and Baker, 2008;
Kaufmann et al., 2010).

SIMS involves an internal-coordinate representation of proteins where bond lengths and
bond angles are constant; peptide bond torsions are restricted to their trans conformation (i.e.,
ω = 180◦). Protein conformations are represented by vectors of backbone (ϕ, ψ) dihedral
angles; therefore, a protein with N + 1 residues is modeled with 2N DoFs. Side-chains are not
modeled explicitly but optimized on-the-fly by Rosetta. This approach is similar in spirit to
those involving coarse-grained potentials (Davtyan et al., 2012).

Proteins are decomposed into fragments (i.e., sets of residues) on which moves are applied.
Fragments can be defined automatically, based on secondary structure, or by experts. De-
pending on how flexible parts of the protein are known to be (based on, for example, rigidity
analysis, B factors, expert knowledge), fragments are assigned probabilities to be chosen during
conformational sampling (Gipson et al., 2013).

In SIMS, the conformational search consists of incrementally building a tree in conforma-
tional space, starting from a known protein state. Tree nodes are conformations, and tree edges
represent potential transitions between them. At each iteration of the SIMS algorithm, the tree
is expanded by choosing a conformation in the tree (using some heuristic) and perturbing it
with a move to produce a new conformation, which is added to the tree only if its energy is
below a pre-defined threshold.

SIMS can be used in two different ways, performing directed searches or undirected searches
in conformational space. A directed search aims at finding a sequence of conformations that can
be seen as milestones along a transition between two known protein states; the term “directed”
relates to the fact that these states are usually referred to as “start” and “goal.” An undirected
search aims at covering large extents of the conformational space, starting from a given protein
state, to obtain a good characterization of this space.

2.2 Sampling-Based Planners Using Projections

As already mentioned, in SIMS, a protein’s conformational space is explored by building a tree of
conformations over it (Gipson et al., 2013). Initially developed in the field of robotics, sampling-
based motion planning algorithms can efficiently grow such a tree in a high-dimensional space.
Among these sampling-based planners, expansive planners rely on maintaining sampling-density
estimates to guide conformational sampling toward unexplored regions of the space (Hsu et al.,
1999; Ladd and Kavraki, 2005; Şucan and Kavraki, 2010). This is often done using low-
dimensional linear projections.

The projection space induced by a k-dimensional projection is discretized into a k-dimensional
grid of equal-size cells. The expansive planner keeps track of conformational-space coverage in-
directly by updating the number of conformations projected into every cell. At each iteration,
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to grow its tree, the planner chooses a cell based on probabilities determined by this coverage
density, and picks the next conformation to be perturbed in this cell.

In this work, SIMS was evaluated with a recent expansive planner: Kinematic Planning
by Interior-Exterior Cell Exploration (KPIECE) (Şucan and Kavraki, 2010). In KPIECE, a
projection cell is chosen with probability strongly favoring exterior cells (i.e., cells having at
least one empty neighbor cell) against interior cells (i.e., cells having no empty neighbor cell);
then a conformation is picked with probability following a half-normal distribution favoring the
most recently added conformations.

As mentioned earlier, protein conformations are represented by vectors of backbone (ϕ, ψ)
dihedral angles. To linearly project a conformation, we first define a Euclidean embedding of
the dihedral angles by constructing a vector of sines and cosines of these (ϕ, ψ) angles. A
conformation for an (N + 1)-residue protein is thus represented by a 4N vector. This vector is
projected into a k-dimensional subspace with a k × 4N matrix.

2.3 Low-Dimensional Linear Projections

The justification for projecting high-dimensional spaces into lower-dimensional ones comes from
the Johnson-Lindenstrauss theorem: distances between points in a n-dimensional space can
be estimated with 1 + ε distortion by the distances between the corresponding points in a
log(n/ε2)-dimensional subspace (Johnson and Lindenstrauss, 1984). However, in protein mod-
eling, projection dimensionality is much less than log(N): typically less than 10, often only 2
or 3. Such drastic dimensionality reduction remains reasonable because, even though proteins
are extremely high-dimensional systems, few of their DoFs are usually involved in a specific
large-scale motion (Amadei et al., 1995; Teodoro et al., 2003). Therefore, a projection based
on these DoFs can benefit a conformational search aimed at modeling this motion.

We propose a methodology to define a projection matrix based on biological insights about
a protein. Ideally, these insights should be provided by an expert with significant knowledge
of the protein, such as, which protein regions are known to be flexible, to remain relatively
unchanged, or to differ between distinct states. If no human expert can provide information,
valuable insights can be derived from experimental studies analyzing protein dynamics, such as
nuclear magnetic resonance spectroscopy (Ángyán and Gáspári, 2013) or hydrogen/deuterium
exchange detected by mass spectrometry (Jaswal, 2013). If no experimental data is available,
as a last resort, useful insights can be provided by computational studies, such as rigidity
analysis (Fox et al., 2011) or normal mode analysis (Bakan et al., 2011). In all cases, we
refer to these insights as “expert knowledge”, and to projections that leverage them as “expert
projections.”

To construct expert projections, we analyze the expert knowledge to (i) identify the most
flexible regions of the protein, and (ii) predict how correlated they are. Indeed, flexible re-
gions that might move in a correlated fashion should be encoded together in one dimension;
separate dimensions should correspond to independently-moving regions. More specifically,
each dimension should encode the list of residues comprised in its set of correlated flexible
regions. Constructing a k × 4N projection matrix means defining k rows corresponding to
the k dimensions of the projection space. Each row contains 4N values that are different
from zero only in columns corresponding to the residues encoded in the corresponding dimen-
sion, knowing that each residue (except the first and last ones) is associated with 4 columns:
{cos(ϕ), sin(ϕ), cos(ψ), sin(ψ)}. Note that each residue appears in only one row. Finally, rows
are normalized to ensure matrix orthonormality (which is important to preserve distances).

By construction, an expert projection differs from a random projection in that it involves

4



Projection-Guided Protein Conformational Sampling Novinskaya et al.

only selected residues; a random projection uses all residues, assigning them different weights.
To ensure a comprehensive assessment of the expert projections, we also build “misguided
projections” whose nature is similar to that of expert ones. In a misguided projection matrix,
each row involves a few residues chosen within mostly-rigid protein regions. Therefore, these
projections are not expected to enhance conformational sampling.

2.4 Automatic Construction of Projections

Defining an expert projection can be a tedious process requiring significant knowledge of the
studied protein. Therefore, we propose a methodology to automatically construct a projection
matrix based on the protein’s secondary structure and its decomposition into fragments, as
defined in SIMS.

First, we rank fragments according to their weights, i.e., their probabilities to be chosen for
perturbation during conformational sampling. If two fragments have equal weights, we rank
them based on their lengths: the longer a fragment, the greater its chances to be flexible. We
want the automatically-built projection to involve the fragments that will be the most “active”
during conformational sampling.

To build the projection matrix, we assign the ranked fragments to different matrix rows.
The first row contains only the top-ranked fragment, whose length is involved in defining the
maximum number of residues than can be added to each remaining row. Then, we assign the
next fragments to the next row, until the maximum number of residues is reached, and so on.
We also make sure that each residue is included in only one row.

3 Experiments

Our objective is to investigate whether conformational sampling can be improved by using
“good” low-dimensional projections. For that, we evaluate the expert projections, that take
biological insights into account, and the automatically-built projections, that are based on
fragment decomposition. We compare them to randomly-generated and misguided projections.
Each experiment was run on a single thread of a quad-core 2.4 GHz Intel Xeon (Nahalem)
CPU, with a 24-hours time limit.

3.1 Studied Proteins and Associated Projections

Cyanovirin-N (CVN) is a bacterial protein with 101 residues (Botos et al., 2002). It can
adopt two stable states (PDB 2EZM and PDB 1L5E) that can be found together in solution.
Switching between these states requires a large-scale domain swapping (the RMSD distance
between them being around 17 Å) involving the correlated activity of three loop regions: residues
24-28, 50-55, and 75-80 (colored blue in Fig. 1a). Therefore, we generated a 3-dimensional
expert projection matrix, each row encoding one of these loops. The misguided projection
also has 3 dimensions: two dimensions encode residues 40-45 and residues 83-88, respectively
(colored orange in Fig. 1a), and the third dimension encompasses the remaining residues. Note
that regions 40-45 and 83-88 correspond to middle parts of beta-strands with low flexibility.
Finally, the projection that is automatically built by the method presented in Section 2.4 is the
following: residues 75-79 are in the first dimension; residues 24-28 and 50-53 are in the second
dimension; residues 15-16, 29-35, 39, 44-45, 57 and 65-67 are in the third dimension.
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(a) Cyanovirin-N (CVN) (b) Calmodulin (CaM)

(c) Ribose-binding protein (RBP)

Figure 1: Proteins used in our experiments. Blue and orange areas indicate residues involved
in expert and misguided projections, respectively.

Calmodulin (CaM) is a calcium-binding protein with 144 residues (Anthis et al., 2011;
Nelson and Chazin, 1998). It has been observed in an open state (PDB 1CLL) and a closed
state (PDB 1PRW) that are about 16 Å RMSD apart. The transition between them involves
the unfolding of several helices and an hinge-like motion of the middle part of the central helix.
We thus constructed a 2-dimensional expert projection: the first dimension encodes the central
hinge (residues 67-80); the second dimension includes other regions known to be involved in the
transition (residues 5-20, 35-41, 52-57, 87-93, 107-116, 126-129). These residues are colored blue
in Fig. 1b. The misguided projection is also 2-dimensional and includes residues of alpha helices
not involved in the transition: both dimensions contain residues 30-35 and 47-52 (colored orange
in Fig. 1b), but with different signs to ensure matrix orthonormality. Finally, the automatically-
built projection is defined as follows: residues 65-78 are in the first dimension; residues 53-59
and 124-132 are in the second dimension.

6



Projection-Guided Protein Conformational Sampling Novinskaya et al.

Figure 2: Success rates (i.e., percentage of successful runs, among 20) of the automatically-
generated, expert, randomly-generated and misguided projections, when performing directed
searches between stable states of CVN, CaM and RBP, with a 24-hours time limit.

Ribose-binding protein (RBP) is the largest protein we studied, with 271 amino acids
(Björkman et al., 1994; Björkman and Mowbray, 1998). It consists of two domains connected by
three loops forming a hinge. The open conformation (PDB 2DRI) and the closed conformation
(PDB 1URP) of RBP are only 4 Å RMSD apart, but the transition between them requires a
correlated motion of the three loops (colored blue in Fig. 1c). We constructed a 2-dimensional
expert projection: the first dimension contains two of the loops (residues 91-104 and 226-237);
the second dimension contains the third loop (residues 253-269). The 2-dimensional misguided
projection is created using residues of several alpha helices: the first row includes residues 19-26
and 241-248; the second row includes residues 140-147 and 168-175; these residues are colored
orange in Fig. 1c. The automatically-built projection is the following: residues 89-98 are in the
first dimension; residues 64-69 and 253-259 are in the second dimension.

3.2 Improvement of Directed Search

In our first experiment, we evaluated the impact of the projections on the performance of a
planner used for conformational sampling. For each protein and each type of projection, we
performed 20 runs of a directed search between two protein states. We define the success rate
of a projection as the percentage of runs that successfully produced a solution pathway within
the 24-hours limit. Fig. 2 shows that using the expert projection allows the planner to perform
consistently and significantly better than when using the random or misguided projections. The
success rate is more than doubled for CVN, and is about 1.5 times higher for CaM and RBP.
The automatically-built projection performs reasonably well: even though its success rate is
lower than that of the expert projection, it is consistently better than those of the random and
misguided projections.
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Figure 3: Success rates, as a function of the planner’s running time, of the automatically-
generated, expert, randomly-generated and misguided projections, when performing directed
searches between stable states of CVN, CaM and RBP.

Another way to assess the projections is to plot their success rate as a function of the plan-
ner’s running time (Fig. 3). The probabilities of success after 24 hours in this plot are the
success rates reported in Fig. 2. Plotting success rates over time allows for a richer compar-
ison of the projections. First, Fig. 3 shows that the previous observations about the expert
and automatically-built projections hold at any time for CVN. On the contrary, for RBP, the
performance improvement achieved using the expert projection is observed only after some
time. Finally, results for CaM illustrate that the automatically-built projection can sometimes
outperform the expert one.

As the expert and automatically-built projections were specifically conceived to enhance
the directed search, it is reassuring to observe such performance improvement. However, the
improvement is sometimes small, highlighting the difficulty of defining a projection that would
consistently be beneficial, even for a single task. Next, we examine how the projections impact
another task.
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Figure 4: Box plots representing the average number of cells in projection space explored
by the planner (over 20 runs) when performing 24-hours-long undirected searches for CVN,
CaM and RBP, using the automatically-generated, expert, randomly-generated and misguided
projections.

3.3 Improvement of Undirected Search

In a second experiment, we evaluated the extent of the conformational exploration performed
by a planner using various projections. For each protein and each projection type, we performed
20 runs of an undirected search starting from a given state.

3.3.1 Projection-Space Coverage

One way to quantify the extent of conformational exploration, at least indirectly, is to assess the
volume of projection space that is explored. For that, we count the number of cells containing
the projection of at least one conformation (i.e., non-empty cells). The number of explored
cells is averaged over 20 runs, for each protein and each projection type (Fig. 4). Clearly, the
automatically-built projection consistently and significantly outperforms the others: it yields
numbers of explored cells at least four times higher. The expert projection performs better
than the random and misguided ones only for CVN; for CaM and RBP, it outperforms only
the misguided projection.

3.3.2 Conformational-Space Coverage

A better way to assess the extent of conformational exploration is to estimate the volume of
explored conformational space itself (Cazals et al., 2015; Yang et al., 2014). For that, we count
the number of 2N -dimensional balls of radius 1 Å needed to cover the set of conformations
sampled by the planner. After the planner has stopped, we use a simple greedy method to
cover the sampled conformations with such balls. We repeat the following until they are all
covered: randomly pick an uncovered conformation and make it the center of a new ball; mark
as covered all the conformations within this ball. Despite producing random coverages and not
optimal ones, this method yields ball counts whose standard deviation is usually less than 1%.
Therefore, it provides good estimates of conformational-space coverage.

The number of balls covering the sampled conformations is averaged over 20 runs, for each
protein and each projection type. Fig. 5 shows that mixed results were obtained. Neither
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Figure 5: Box plots representing the average number of balls (in conformational space) required
to cover the set of conformations sampled by the planner (over 20 runs) when performing 24-
hours-long undirected searches for CVN, CaM and RBP, using the automatically-generated,
expert, randomly-generated and misguided projections.

the expert nor the automatically-built projections outperform the random or misguided ones.
Which projection performs best depends on the studied protein. A reassuring result is that
the expert projection is never the worst one. However, the inconsistency of the automatically-
built projection highlights its lack of generality. The differences between Fig. 4 and Fig. 5
also illustrate that a good projection-space coverage does not necessarily translate into a good
conformational-space coverage.

3.3.3 Discussion

The fact that a given projection increases projection-space coverage only means that this pro-
jection is well aligned with some flexible parts of the protein; in this case, the planner is fully
able to exploit this projection as an expansion heuristic. However, this does not necessarily
translate into an overall increase of conformational-space coverage, which could be achieved
only by having a projection better capturing the overall protein flexibility. Our experiment
shows that it is also a task-specific issue, and that defining a projection that would perform
well across a wide range of tasks could be challenging.

4 Conclusion

In this paper, through our experiments with the SIMS framework (using the KPIECE expansive
planner), we have shown that protein conformational sampling performed by sampling-based
planners can be improved using relevant low-dimensional linear projections. Our contribution
consists of proposing two methods to define such projections. First, using expert knowledge
about a protein’s flexibility, one can define expert projections that efficiently guide conforma-
tional sampling. Second, even without any expert intervention, it is possible to automatically
build projections that perform reasonably well. These two methods were conceived with a di-
rected search in mind, and therefore benefit mostly this task. The mixed but promising results
obtained with the undirected search highlight the difficulty of defining projections that could
benefit any task.
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As part of our future work, we plan to investigate whether projections should remain task-
specific, or whether it is possible to define efficient generic projections. Additionally, we want
to develop other methods to automatically generate (possibly non-linear) projections, using
normal mode analysis, principal component analysis, and graph-theory-based rigidity analysis.
It would be interesting to assess how a projection is performing and to modify it, during the
conformational exploration. We also plan to analyze the influence of dimensionality on the
performance of these projections, and to study multi-chain proteins.
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