
SUPERBOT: A Deployable, Multi-Functional, and
Modular Self-Reconfigurable Robotic System

Behnam Salemi, Mark Moll, and Wei-Min Shen

Information Sciences Institute
University of Southern California

Marina del Rey, USA
{salemi, moll, shen}@isi.edu

 Abstract – Self-reconfigurable robots are modular robots that
can autonomously change their shape and size to meet specific
operational demands. Recently, there has been a great interest in
using self-reconfigurable robots in applications such as
reconnaissance, rescue missions, and space applications. Designing
and controlling self-reconfigurable robots is a difficult task. Hence,
the research has primarily been focused on developing systems that
can function in a controlled environment. This paper presents a
novel self-reconfigurable robotic system called SuperBot, which
addresses the challenges of building and controlling deployable
self-reconfigurable robots. Six prototype modules have been built
and preliminary experimental results demonstrate that SuperBot is
a flexible and powerful system that can be used in challenging real-
world applications.

 Index Terms – Modular Robots, Self-Reconfigurable Robots,
Distributed Robotics, Deployable Robots

I. INTRODUCTION

Self-reconfigurable robots are modular robots that can
autonomously change their shape and size to meet specific
operational demands. In domains where the task and
environment are known, it is often more efficient to build
fixed-shape special purpose robots [1]. However, in
applications such as reconnaissance, rescue missions, and
space applications where the task and environment are not
fully known self-reconfigurable robots can out-perform fixed-
shape robots.

Because of their self-reconfigurability, self-reconfigurable
robots are more versatile, fault-tolerant, and efficient
compared to their non self-reconfigurable counterparts. For
example, a self-reconfigurable robot can become a snakelike
robot to crawl through a narrow passage and then grow legs
and grippers to pick up and carry an object.

Building and controlling self-reconfigurable robots are
very difficult. Designing modules that are flexible and allow
for efficient performance of locomotion, object manipulation
and self-reconfiguration is very challenging. Connectors are
critical parts of a self-reconfigurable module [2]. A successful
connector design requires solving many challenging problems
for enabling modules to reliably dock/undock and create a
strong and effective robot.

In the past decade, researchers have addressed the
hardware and software challenges of building self-
reconfigurable robots. In the area of hardware design, Chain-
type [3,4,6,7], and Lattice-based [8,9,10,11] self-

reconfigurable robots have been developed. Lattice-based self-
reconfigurable robots consist of a set of modules that can only
attach to other modules in discrete locations on a lattice. They
require continuous self-reconfiguration for locomotion and
manipulation. Chain-type self-reconfigurable robotic systems
are made up of linear, looped, or branched chains of
homogeneous or heterogeneous modules. This class of self-
reconfigurable robots are able to separate locomotion from
reconfiguration and for locomotion and manipulation these
robots do not require continuous self-reconfiguration.

In the area of software, many centralized and distributed
software systems have been presented. Distributed approaches
include Digital-Hormone control [16,17], Role-Based control
[18], and local search approaches such as [19]. Centralized
approaches include gait-table control [1], and M-TRAN
control system [5]. Difficulties in controlling Self-
reconfigurable robots stem from the fact that a network of
self-reconfigurable modules is distributed in nature, modules
have limited information, and the overall behaviour of a robot
emerges from the coordinated actions of all constituting
modules. A control system for such robots needs to be
adaptive to dynamic topology of the robot, scalable, fault
tolerant and distributed to avoid introducing a single point on
failure in the system.

Fig. 1 A network of 6 SuperBot Self-reconfigurable modules

Due to the difficulties of designing and controlling self-

reconfigurable robots, in the past, almost all the research
efforts have been focused on developing hardware and
software systems that can function in the controlled indoor or
outdoor environment of a Lab. However, less attention has
been on designing fully functional self-reconfigurable robots
for real applications. Fortunately, recent advances in design

1-4244-0259-X/06/$20.00 ©2006 IEEE

and control of self-reconfigurable robots have made this
dream become a possibility.

Transition from a controlled environment to a real-world
situation, however, introduces many new challenges to the
field of self-reconfigurable robotics. These challenges include
efficient performance of locomotion, manipulation, and self-
reconfiguration tasks in the presence of obstacles, power
management issues, modules mechanical and electronic
endurance and reliability in spite of being in contact with a
rough environment, dealing with dust, moisture, and strong
light sources, designing reliable and strong connectors,
sensing and meaningful interaction with the environment, and
efficient human-robot interaction and control.

In this paper, we present a novel deployable and multi-
functional self-reconfigurable robotic system called SuperBot.
SuperBot is being designed for NASA space exploration
programs and addresses the above-mentioned challenges.
Figure 1 shows a network of six connected SuperBot modules.

The form factor of SuperBot modules is similar to that of
the MTRAN modules [6]. However, SuperBot modules have
three degrees of freedom, and such capability has drastically
increased the mobility and flexibility of individual and
networked modules. SuperBot modules are designed to be
strong, flexible, and capable of performing efficient
locomotion, self-reconfiguration, and manipulation tasks.
Similar to MTRAN, a network of SuperBot modules can
perform as both lattice-based and chain-type self-
reconfigurable robots. A network of SuperBot modules is
capable of sharing power and communicating using high-
speed infra-red LEDs. The on-board multi-threaded software
controls modules’ functionalities and coordinates the
behaviours of the network of modules in a distributed fashion.

This paper is organized as follows: In Section two we
discuss the considerations in designing SuperBot. In section
three we will describe its hardware architecture. In section
four we will describe the software architecture. Section five
describes some performance evaluation experiments; and
section six will conclude and describes the future research
directions.

II. DESIGN CONSIDERATIONS

 The basic design philosophy of Superbot modules is to
develop flexible, powerful and sturdy modules that can
efficiently perform tasks in an uncontrolled environment
without requiring close attention. In order to accomplish this
goal six criterions were considered in the design and
construction of SuperBot.
 First, as SuperBot is intended to operate in a harsh and
rough environment, the design needed to allow for roughed
and sealable modules. Modules and connectors needed to
cover their internal electronic and mechanical components and
protect them from dust, moisture, and physical impact. The
building materials needed to be resistant to abrasion and other
deleterious effects.
 Second, SuperBot is required to perform locomotion,
manipulation and self-reconfiguration tasks in the presence of
obstacles in an uncontrolled environment. Therefore, it was

essential for the modules to have enough dexterity in order to
maneuver around obstacles to perform the task in hand and at
the same time conserve energy by minimizing the number of
required movements.
 Third, to be effective in real applications, SuperBot
modules should have enough torque to move and lift a
reasonable number of neighboring modules and exert force
whenever it is needed. This required maximizing the power of
actuators while the size and weight of the module are kept
minimal.
 Fourth, a network of SuperBot modules should be
cognizant of their environment through a series of sensors
which allow them to avoid obstacles and also navigate in the
environment. This also includes the ability of sensing and
communicating with other SuperBot modules. Due to the
distributed nature of a network of SuperBot modules, sensory
information is available in the network of modules in a
distributed form. The sensory information might have to be
fused for autonomous decision-making or being
communicated to a controller host.
 Fifth, available power in a network of SuperBot modules
should be efficiently used and managed. Some modules may
need to move more often and spend more energy while some
other modules may not move at all. In addition, the power
source of some modules may fail. In such situations, modules
should be able to share the available energy in the network. In
addition, SuperBot should be able to connect one of its
modules to a charging station and charge all connected
modules.
 Sixth, distributed control software was necessary for
effective use of SuperBot. The control software needed to be
real-time, fault tolerant and scalable. In addition, it had to
accept and execute high-level commands for locomotion,
manipulation and self-reconfiguration from a remote host
without requiring detailed instructions for individual modules.
 In addition to above considerations, the following
criterions were also considered in the design of the connectors:
First, the connectors needed to be genderless meaning that any
connector of a module had to be able to dock to any other
connector of another module. Second, two docked connectors
could be oriented relative to each other in 90◦ intervals. Third,
connectors needed to enable communication and power
sharing among modules. Fourth, either side of two docked
connectors had to be able to undock. This is necessary in a
situation where one side is dead. In this situation the other side
should be able to release itself. Fifth, the connector needed to
enforce necessary tension to hold docked faced together.
Sixth, connectors needed to sense and guide docking process.
Seventh, as it was mentioned earlier, connectors needed to be
sand and moisture proof and resistant to the abrasion.
 At the time of the preparation of this paper, several
designs that fulfill on all the above requirements were being
prototyped and tested. The analysis and experimental results
of the finalized connector design will be reported in the future
publications. For the time being, manual connectors have been
used for docking purposes.

III. MECHANICAL DESIGN

The overall body of a SuperBot module is in the form of
two linked cubes. The dimensions of each cube are 84x84x84
millimeter and therefore each module is 168 mm long. The
current prototypes are made up of a hard aluminium alloy and
weigh about 500 grams including the electronics and batteries.
Each module consists of three main parts: Two end effectors
and a rotating central part. This allows a module to have three
degrees of freedom in the form of 180◦ yaw, 180◦ pitch, and
270◦ roll; see figure 2.This design gives the SuperBot module
the most flexible movements that we know in the literature,
and will allow a single module to bend and twist into many
different shapes and provide the needed flexibility for
multimode locomotion.

Connector (up)

Connector (front)

Connector (left)

Connector (right)

Connector (back)

Connector (down)

Fig. 2 SuperBot module design and Degrees of Freedom.

Other designs such as MTRAN [6] which do not have the

rolling ability of the central part can in many cases produce a
similar roll effect of a module through execution of a sequence
of bending, docking, and undocking actions. However, that
requires consumption of more energy and performing them
may not be possible in the presence of other obstacles. Figure
3 shows a prototype of Superbot module where as a result of
the 90◦ rotation of the central part the end effectors are in two
different modes. In figure 3a, the end effectors sweeping
planes are perpendicular to each other which are equivalent to
the CONRO [4] module design and in figure 3b the end
effectors sweeping planes coincide which are equivalent to the
MTRAN [6] module design.

(a) (b)

Fig. 3 Two modes of Superbot; similar to (a) CONRO and (b) M-TRAN

There are six connectors on each Superbot module; one on
each side of the end effectors; see figure 2. Any of the six
connectors of a module can connect to any connectors of
another module in all 90◦ interval orientations.
 The drive train of each degree of freedom of a module
consists of a MicroMo® DC electric motor, a planetary
gearbox, and an external gearbox; see figure 4. The DC motor
outputs between 5 to 21.18 milli-Newton-meter torque. The
gear ratio of the planetary gearbox is 1:86 and its efficiency is

70%. The gear ratio of the external gearbox is 1:5. Based on
the following calculation this results a maximum of 6.38 Nm
torque.

21.18 x 86 x 70% x 5 = 6375 mN-m = 6.38 N-m

 Given the size and weight of each module, this amount of
torque is enough for reliably lifting three neighboring
modules.

Fig. 4 SuperBot Motor, Gearboxes and end effector drive shaft

IV. HARDWARE ARCHITECTURE

 SuperBot possesses a modular hardware architecture.
Each module’s on-board hardware is responsible for
controlling the actuators, connectors and sensors, power
management, communicating with neighboring modules,
autonomous decision-making, and distributed control of high-
level behaviours.
 Each half module (cube) has a controller. The controller
of the half module containing the battery and one motor is
called the ‘master controller’ and the controller of the other
half is called the ‘slave controller’; see figure 5. Both
controllers are connected through power lines and a bi-
directional 400 Kb/S I2C bus. I2C is a two-wire bus and is
selected to provide enough bandwidth between half modules
and at the same time keep the number of wires among the
cubes low. Each controller is responsible for managing the
motors, sensors, communication, power and docking of its
corresponding cube. In addition, the master controller is
responsible for running the high-level behaviour controller in
each module.

Fig. 5 SuperBot hardware control Architecture

Each controller is based on a 16 MHZ ATmega128

microcontroller [20], which is an 8-bit low power AVR
processor with 128 Kbytes of flash program memory, 4

Kbytes of EEPROM and 4 Kbytes of internal SRAM. The
ATmega128 also includes an 8-channel 10-bit ADC, three
timers, and several bus interfaces including two USARTs, SPI,
and I2C.
Figure 6 shows the details of the master controller. A wireless
receiver is considered for remote on/off, motor disable, to stop
modules while the control program is running, and receiving
serial commands. The Atmega128 can measure the voltage
and output current of the battery. PWM pulses are interfaced
to the motor through an H-bridge for controlling the motor
speed. The angular position of the end effector is sensed by a
potentiometer that is coupled to its shaft and is connected to an
A/D line of the Atemga128. A one Mb/s SPI communication
bus is used for communicating with dock faces. This provides
enough bandwidth to communicate with three dock faces that
communicate with their neighboring modules through 230K
Baud RS-232 lines. Details about the communication circuits
are given below. A 3D accelerometer/inclinometer is also
interfaced through the SPI bus. A JTAG port is used for
debugging purposes. Figure 7 shows the details of the slave
controller, which has a similar architecture.

Fig. 6 Master Controller Architecture

 Figure 8 shows the details of the communication interface
on a dock face. A communication interface has four infra-red
receiver LEDs and a transmitter LED. Any combinations of
the receiver channels can be selected which results the sum of
the received signals on each receiver LED to be delivered to a
buffer stage. The output of the buffer is connected to an A/D
channel of the corresponding controller. As a result the
controller can measure the intensity of the input signal. This
analogue value is proportional to the distance and angle of a
nearby docking face and is used for guiding the docking
process of two modules. This analogue value ranges from 0 to
4.5 volt for a transmitter LED at 40cm distance to coincided
docking faces, respectively. The four channels on each module
engaged in a docking process results eight channels of
information, which allows for guiding the docking process in
3D space. In addition, receivers of a module can read the
analogue value produced by the reflection of the module’s
own transmitter LED. This can be used to measure the
distance of a docking face from a reflective object.

Fig. 7 Slave Controller Architecture

 The amplifier stage is used to amplify and shape a digital
signal received from another module during communication.
Modules can communicate as far as up to one meter. The
communication speed is 230K Baud and an IrDA timing mode
is used. When a byte of data is received from a neighboring
module, the SPI/RS232 interface, via a MAX3100 chip,
generates an interrupt and the corresponding controller reads
the received byte through the SPI bus. This interrupt driven
architecture allows the controllers to use their time to perform
other tasks and attend to the communication module only
when there is a byte of information to be retrieved.

Fig. 8 Communication interface on a dock face.

In order to transmit a byte of data, a controller just needs to
write the byte into the SPI/RS232 interface buffer and the rest
of the process is taken care of by the interface. The output
infra-red light of the transmitter LED can also be modulated
through a command from a General Purpose Output (GPO)
pin. This will generate a continuous modulated infra-red light
to be received by the receiving LEDs for guiding the docking
process. The modulated signal in combination with the filter
module is used for removing DC level noise such as sun light
in an outdoor environment.
 Figure 9 shows the power sharing schematic. In each of
the six docking faces there is switch/diode combination, which
allows the current to always flow in. However, the out current
is only possible if the switches are closed, which are
controlled by the controller of the corresponding half module.
The default position of the switch connected to the battery is
on the charger side and the rest of the switches are normally
open.

Fig. 9 Power Sharing circuit schematic.

In an initial situation where all the batteries of a connected
network of modules are fully discharged (all modules are
dead) as soon as a charging source is connected to one of the
connectors of a module, its battery starts charging through the
input current and the battery switch. Once the module battery
is charged, the controllers will become active and the output
switches can be connected one by one to allow other modules
to start charging without overloading the charging source. This
design allows modules to share the battery power at will and
in situations where the inside batteries fail, modules can get
power from other modules. In the current prototype a
1600mAh, 7.4 volt lithium-polymer battery is used.

V. SOFTWARE ARCHITECTURE

The control of the SuperBot system is a challenging task,
for modules must be able to dynamically reconfigure into
different configurations/functionalities and support plug-and
play with other types of devices. Our approach to this
challenge will build upon our previous work on (i) hormone
inspired distributed control, (ii) table based control for fast
prototyping, and (iii) phase automata for coordinating module
activities. This approach allows the SuperBot system to be:

• Distributed: to support decentralized control and avoid
single point failures (i.e., a single module failure would not
paralyze the entire system). A module must select its actions
based not on its absolute address or unique identifier, but
based on its topological location in the current configuration.

• Collaborative: to allow modules to negotiate the best
actions for a global task. For example, if a snake’s head
module wants to move forward while the tail wants to move
backward, then they must negotiate to select the best action for
the entire system.

• Dynamic: to be able to adapt to the topological changes
in the module network and support all possible configurations.

• Asynchronous: to synchronize modules actions without
a global clock.

• Scalable: to work for any configuration regardless of the
shape and size.

The SuperBot software consists of three main
components:

A. Low-level Software

The low-level software on the modules hides the details of
low-level control of the hardware from the behavior software
programmer and is built on top of AvrX, a small real-time

kernel for embedded processors [21]. All system-level and
user-level code is written in C language as separate tasks.
Associated with each task is a message queue. Tasks can
communicate with each other by placing messages into each
other’s queue. Tasks can be set up to run periodically or to be
run “on demand.” Figure 10 shows a simplified diagram of the
tasks running on a SuperBot module.

Fig. 10 Tasks running on a SuperBot module

The AvrX kernel runs on each of the Atmega128
controllers, together with a number of tasks. The Master and
Slave use I2C serial communication to send messages to each
other. The communication with other modules via the docks is
handled by the IR tasks. For simplicity, the IR related tasks for
only one dock on the Master and Slave are shown. Although
the large number of tasks seems to add significant complexity,
it actually minimizes the time that the CPU is blocked waiting
on a task or resource.

The handling of incoming data through IR and I2C is
interrupt-driven. I2C communication is very fast and relatively
reliable. The sending and receiving of data is therefore
wrapped into single task: in this case the task switching cost is
expected to be higher than the cost of not being able to send
and receive simultaneously. The motor task implements a PID
controller, which is being executed every one millisecond.

The IR communication is much slower and tends to be
noisier. For IR communication we have implemented the stop-
and-wait ARQ (Automatic Repeat reQuest) protocol. Once the
IR interrupt handler receives a complete packet, it passes the
packet on to a Receive Task. This task checks for transmission
errors. If no errors are found the Receive Task will place the
message into the appropriate message queue and ask the Send
Task to send an ACK signal (acknowledgment) to the original
sender. If there is an error, the Receive Task will ask the Send
Task to send a NACK signal. A task on a neighboring module
cannot directly send a message to a low-level task on a
module, but only to a behavior task. So a message received on
any of the docks is routed to a behavior task. If the destination
task specified in the header of the message does not run on a
receiving module, then the message is simply ignored.

The sensor task is executed by the behavior task and once
activated, it reports the status of the on-board sensors to the
behavior task directly or through I2C channel. The power
management task is responsible for checking each connector
current, the status of the battery, charging the battery, and
set/resetting the power switches in each docking face.

B. Behavior-Level Software

The high-level behavior code runs only on the Master
controller. In figure 10 only one behavior task is shown, but in
principal several behavior tasks can run simultaneously.
Examples of behavior tasks are power management,
locomotion, manipulation, and self-reconfiguration. For
control and coordination of multi module robots we have used
a distributed approach, called “Digital Hormone Control”
[13,14,15,16,17].

B. Remote-Client Software

 This software module is the interface between the high-
level controller (usually a human) and SuperBot. The Remote-
client software is developed in Java and runs on a hand-held
PC. High-level commands are sent to SuperBot through the
wireless link; see figure 11.

Fig. 11 The SuperBot remote commander.

VI. EXPERIMENTS

We have conducted several experiments to evaluate the
performance of SuperBot modules. These experiments include
single and dual module gaits, and sensors.
Single module gaits demonstrate the outstanding ability of a
single SuperBot module to move around, flip and change its
direction. This ability is very critical in connecting detached
SuperBot modules to make a connected network.
 The dual module experiments have shown that SuperBot
modules can synchronize their activities using communication
and perform caterpillar-like, creep, drunken or S moving gaits
and also being able to change direction in each case. The
speed of creep gait has been 12.5cm/s. A dual module
Caterpillar-like SuperBot has been able to move of small rocks
and go through a pipe.
 We have used the 3D accelerometer/inclinometer sensor
to balance a cup of Dr Pepper. Also, we have used this sensory
information to develop single module gaits that are dependent
on the orientation of the module on the floor. As more
modules are assembled we will use them to perform multi-
module gaits, manipulation and self-reconfiguration tasks. For
videos of the above-mentioned and other experiments please
visit: http://www.isi.edu/robots/superbot/movies/.

VII. CONCLUSION AND FUTURE WORK

 SuperBot, A deployable, multifunctional self-
reconfigurable robotic system was presented. It was discussed
how SuperBot can be used in real applications which require
flexible, efficient, sturdy, strong, and durable Robots.

 In the future, we plan to assemble twenty SuperBot
modules and evaluate the performance of larger networks of
modules. We plan to add intelligent docking connectors and
evaluate self-reconfiguration tasks. We also plan to build
module using titanium and develop space qualified
electronics.

ACKNOWLEDGMENT

 This research is supported in part by NASA’s Cooperative
Agreement NNA05CS38A, and in part by US Army Research
Office under the grants W911NF-04-1-0317 and W911NF-05-
1-0134. The authors are also grateful to other members of the
Polymorphic Robotics Laboratory for their useful comments
on the earlier drafts of this paper.

REFERENCES
[1] Yim, M., Locomotion with a unit-modular reconfigurable robot (Ph.D.

Thesis), in Department of Mechanical Engineering. 1994, Stanford
University.

[2] Nilsson, M., Essential Properties of Connectors for Self-reconfiguring
Modular Robots, . 2001, Autonomous Functional Lab: Kista, Sweden.

[3] T. Fukuda, Y. Kawauchi, and F. Hara, "A Study on a Dynamically
Reconfigurable Robotic System "CEBOT"," Japan Soc. Mech. Eng.
(JSME) Int'l Journal , Series C, Vol. 37, No.1, pp.162-171 1994

[4] Castano, A., W.-M. Shen, P. Will, CONRO: Towards Miniature Self-
Sufficient Metamorphic Robots. Autonomous Robots, 2000.

[5] E. Yoshida, et al.: "A Self-Reconfigurable Modular Robot:
Reconfiguration Planning and Experiments", International Journal of
Robotics Research, Vol. 21, No. 10, pp.903-916, 2003

[6] Murata, S. et al M-TRAN: self-reconfigurable modular robotic system,
Mechatronics, IEEE/ASME Transactions on Volume: 7, Issue: 4
On page(s): 431- 441, 2002

[7] Yim, D. G. Duff, and K. D. Roufas, “PolyBot: a modular reconfigurable
robot,” in International Conference on Robotics and Automation, (San
Francisco, California, USA), IEEE, Apr. 2000. In press.

[8] Lee, W.H., Sanderson A. C. Dynamics and Distributed Control for
Tetrobot Robots. in ICRA. 1999. Detroit.

[9] Murata, S., H. Kurokawa, S. Kokaji. Self-Assembling Machine. in Proc.
IEEE Robotics and Automation. 1994.

[10]Murata, S., H. Kurokawa, E. Toshida, K. Tomita, and S. Kokaji. A 3-D
self-reconfigurable structure. in ICRA. 1998.

[11]Rus D., Marsette Vona: Crystalline Robots: Self-Reconfiguration with
Compressible Unit Modules. Auton. Robots 10(1): 107-124 (2001)

[12]Kotay, K., D. Rus, M. Vona, and C. McGray. The self-reconfiguring
robotic molecule. in ICRA. 1998.

[13]Salemi, B., WM. Shen and P. Will. Hormone Controlled Metamorphic
Robots. in ICRA. 2001.

[14]Salemi B., Peter Will, and Wei-Min Shen. "Distributed Task Negotiation
in Modular Robots". IEEE/Robotics Society of Japan, Special Issue on
"Modular Robots", 2003.

[15]Salemi B., Wei-Min Shen. "Distributed Behavior Collaboration for Self-
Reconfigurable Robots". International Conference on Robotics and
Automation. April - May 2004, New Orleans, LA, USA.

[16]Salemi B. Peter Will, and Wei-Min Shen. "Autonomous Discovery and
Functional Response to Topology Change in Self-Reconfigurable
Robots". International Conference on Intelligent Robots and Systems.
September - October 2004, Sendai, Japan.

[17]Shen, W.-M., Salemi, B., and Will, P. 2002. Hormone-Inspired Adaptive
Communication and distributed control for CONRO self-reconfigurable
robots. IEEE Transactions on Robotics and Automation, 18(5).

[18][Stoy 2002a] Stoy, K., Shen,WM., Will, P.,, Using Role-Based Control to
Produce Locomotion in Chain-Type Self-Reconfigurable Robots.
IEEE/ASME Transactions on Mechatronics, 2002. 7(4): p. 410.

[19]Bojinov, H., A.Casal,T.Hogg. Multiagent Control of Self-reconfigurable
Robots. in ICMAS. 2000. Boston,MA,USA.

[20] http://www.atmel.com/dyn/products/product_card.asp?part_id=2018
[21]L. Barello, “AvrX real time kernel real time kernel.” [Online]. Available:

http://www.barello.net/avrx/

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

	IROS06PageNumber:
	0:
	7373475306520634: 3636
	4667825839916519: 3637
	15065413124525245: 3638
	269735554275588: 3639
	5045375823439868: 3640
	3464731807208493: 3641

	TL1:
	0:
	6930075025916348: Proceedings of the 2006 IEEE/RSJ

	TL2:
	0:
	5457053967894692: International Conference on Intelligent Robots and Systems

	TL3:
	0:
	865445374519094: October 9 - 15, 2006, Beijing, China

